研究论文

多面体烷氯乙基脲的合成新方法研究

  • 张宏雷 ,
  • 朱晓鹤 ,
  • 闫红 ,
  • 宋秀庆
展开
  • 北京工业大学生命科学与生物工程学院 北京 100124

收稿日期: 2011-07-22

  修回日期: 2011-10-10

  网络出版日期: 2012-03-09

基金资助

国家自然科学基金(No. 20872009)和北京市自然科技基金(No. 200710005002)资助项目.

Synthesis of Polyhedronylcarbonyl Chloroethylureas Using Acylfluoride in Ionic Liquid

  • ZHANG Hong-Lei ,
  • ZHU Xiao-He ,
  • YAN Hong ,
  • SONG Xiu-Qing
Expand
  • College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124

Received date: 2011-07-22

  Revised date: 2011-10-10

  Online published: 2012-03-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 20872009), and the Natural Science Foundation of Beijing (No. 200710005002).

摘要

运用酰氟为中间体, 在离子液体中, 以多面体烷二羧酸为原料, 研究了多面体烷氯乙基脲的合成新方法. 在[bmim][BF4]离子液体中, 合成了12 个未见文献报道的多面体烷氯乙基脲, 结构经核磁共振氢谱、碳谱和质谱确证. 该方法与以酰氯为中间体的溶剂反应相比, 具有产率高、分离简单和环境友好的特点.

本文引用格式

张宏雷 , 朱晓鹤 , 闫红 , 宋秀庆 . 多面体烷氯乙基脲的合成新方法研究[J]. 有机化学, 2012 , 32(02) : 344 -348 . DOI: 10.6023/cjoc1107222

Abstract

Twelve polyhedronylcarbonyl chloroethylureas were synthesized by the condensation of acylfluoride and chloroethylurea in the ionic liquid [bmim][BF4] with the polyhedron dicarboxylic acids as starting materials. The structures have been characterized by 1H NMR, 13C NMR and MS techniques. Comparison with the traditional methods of acylchloride as intermediate, this procedure has the advantages of better yield, simplified operation and environmental benignity.

参考文献

[1] Stewart, B. W.; Kleihues, P. IARC Press 2003, 48.

[2] Loppky, H. N. ACS Symp. Ser. 1994, 553, 1.

[3] Hilgeroth, A.; Baumeister, U. Chem. Eur. J. 2001, 7, 4599.

[4] Carell, T.; Winter, E. A.; Bashirhashemi, A.; Rebek, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 2059.

[5] Bashirhashemi, A.; Li. J. C. J. Org. Chem. 1995, 60, 698.

[6] Qin, Y.; Deng, H. F.; Yan, H.; Zhong, R. G. J. Mol. Graph. Model 2011, 29, 826.

[7] Mahkam, M. Macromol. Symp. 2003, 200, 209.

[8] Galow, T. H.; Rodrigo, J.; Cleary, K. J. Org. Chem. 1999, 64, 3745.

[9] Lou, W. Y.; Zong, M. H.; Wu, H. Green Chem. 2005, 7, 500.

[10] Shi, D. Q.; Ni, S. N.; Yang, F. J. Heterocycl. Chem. 2008, 45, 1275.

[11] Madeira Lau, R.; van Rantwijk, F.; Seddon, K. R. Org. Lett. 2000, 2, 4189.

[12] Imrie, C.; Elago, E. R. T.; Williams, N.; McCleland, C. W.; Engelbrecht, P. J. Organomet. Chem. 2005, 690, 4959.

[13] Ying, A.-G.; Ye, W.-D.; Liu, L.; Wu, G.-F.; Chen, X.-Z.; Qian, S.; Zhang, Q.-P. Chin. J. Org. Chem. 2008, 28, 2081 (in Chinese). (应安国, 叶伟东, 刘泺, 吴国锋, 陈新志, 钱胜, 张秋萍, 有机 化学, 2008, 28, 2081.)

[14] Chen, W.-Y.; Lu, Y.; Zhang, Y. Chin. J. Org. Chem. 2006, 26, 87 (in Chinese). (陈维一, 陆军, 张勇, 有机化学, 2006, 26, 87.)

[15] Bliese, M.; Tsanaktsidis, J. Aust. J. Chem. 1997, 50, 189.

[16] Guan, X. P.; Su, Z.; Du, J. W. J. Energ. Mater. 1997, 15, 139.

[17] Harman, D. G.; Blanksby, S. J. Org. Biomol. Chem. 2007, 5, 3495.

[18] Luh, T. Y.; Stock, L. M.; J. Org. Chem. 1979, 37, 338.

[19] Chapman, N. B.; Key, J. M.; Toyne, K. J. J. Org. Chem. 1970, 35, 3860.

[20] Groß, S.; Laabs, S.; Scherrmann, A.; Sudau, A.; Zhang, N.; Nubbemeyer, U. J. Prakt. Chem. 2000, 342, 711.
文章导航

/