学术动态

单萜吲哚生物碱Uleine 及其衍生物的合成进展

  • 王学军 ,
  • 刘建利 ,
  • 黄新炜 ,
  • 王翠玲
展开
  • a 西部资源生物与现代生物技术省部共建教育部重点实验室 西北大学生命科学院 西安 710069;
    b 甘肃中医学院化学教研室 兰州 730000

收稿日期: 2011-08-21

  修回日期: 2011-10-09

  网络出版日期: 2012-03-09

基金资助

国家自然科学基金(Nos. 20872118, 30070905)、教育部博士点基金(No. 20070697012)、陕西省重大科技专项(No. 2008ZDKG-67)和陕西省重点实验室基金(Nos. 2010JS097, 08jk477)资助项目.

Progress in the Synthesis of Indole Alkaloid Uleine and Its Derivatives

  • WANG Xue-Jun ,
  • LIU Jian-Li ,
  • HUANG Xin-Wei ,
  • WANG Cui-Ling
Expand
  • a Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, Xi'an 710069;
    b Department of Chemistry, Gansu College of Traditional Chinese Medicine, Lanzhou 730000

Received date: 2011-08-21

  Revised date: 2011-10-09

  Online published: 2012-03-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20872118, 30070905), the Doctoral Fund of Ministry of Education of China (No. 20070697012), the Major Science and Technology Projects of Shaanxi Province (No. 2008ZDKG-67) and the Foundation of State Key Laboratory of Shaanxi Province (Nos. 2010JS097, 08jk477).

摘要

生物碱uleine 及其衍生物从结构上看属于单萜吲哚生物碱, 它们共同的结构特征是吲哚核与碱性氮原子之间只有一个碳相隔, 而不像其它单萜吲哚生物碱有两个碳原子. 由于其结构特异, 天然含量少, 因而其合成工作一直吸引着化学工作者. 总结uleine 生物碱及其衍生物的合成方法, 根据构建环的种类不同, 把合成方法分为五类. 大部分方法都是以吲哚和吡啶衍生物为起始原料进行四环的合成, 有几条合成路线简短易行.

关键词: uleine; 衍生物; 合成; 综述

本文引用格式

王学军 , 刘建利 , 黄新炜 , 王翠玲 . 单萜吲哚生物碱Uleine 及其衍生物的合成进展[J]. 有机化学, 2012 , 32(02) : 420 -430 . DOI: 10.6023/cjoc1108212

Abstract

Uleine and its derivatives belong to the monoterpenoid indole alkaloids based on their structures. The characteristic of their structures is only one carbon atom which separates the indole nucleus and the basic nitrogen atom, as opposed to the normal two-carbon bridge of tryptamine and most monoterpenoid indole alkaloids. Their natural contents are extremely low, and their synthetic work has attracted generations of chemists. The synthetic methods of uleine and its derivatives are reviewed according to the types of structure building methodology. The indole and pyridine derivatives were used as the starting material in most tetracyclic synthesis. Several simple and convenient routes are succeeded.

Key words: uleine; derivative; synthesis; review

参考文献

[1] Liu, J.-L. Chin. J. Org. Chem. 2003, 23, 784 (in Chinese). (刘建利, 有机化学, 2003, 23, 784.)

[2] Hunziler, J.; Hirt, F.; Schmutz, R. Helv. Chim. Acta 1957, 40, 1189.

[3] Buchi, G.; Warnhoft, E. W. J. Am. Chem. Soc. 1959, 81, 4433.

[4] Gaskel, A. J.; Joule, J. A. Chem. Ind. (London) 1967, 1089.

[5] Shamma, M.; Weiss, J. A.; Shine, R. J. Tetrahedron Lett. 1967, 2489.

[6] Joule, J. A.; Ohashi, M.; Gilbert, B. Tetrahedron 1965, 91, 1717.

[7] Atta-ur-Rahman; Muzaffar, A. Heterocycles 1985, 23, 2975.

[8] Kam, T.-S.; Pang, H.-S.; Choo, Y.-M.; Komiyama, K. Chem. Biodiversity 2004, 1, 646.

[9] Patir, S.; Uludag, N. Tetrahedron 2009, 65, 115.

[10] Uludag, N.; Hökele, T.; Patir, S. J. Heterocycl. Chem. 2006, 43, 585.

[11] Dolby, L. J.; Biere, H. J. Org. Chem. 1970, 36(11), 3843.

[12] Buchi, G.; Gould, S. J.; Naf, F. J. Am. Chem. Soc. 1971, 93, 2492.

[13] Harris, M.; Besselievre, R.; Grierson, D. S.; Husson, H. P. Tetrahedron Lett. 1981, 22, 331.

[14] Bosch, J.; Rubiralta, M.; Domingo, A. J. Org. Chem. 1985, 50, 1516.

[15] Feliz, M.; Bosch, J.; Mauleb, D. J. Org. Chem. 1982, 47, 2435.

[16] Grierson, D. S.; Harris, M.; Husson, H. P. Tetrahedron 1983, 39, 3683.

[17] Natsume, M.; Kitagawa, Y. Tetrahedron Lett. 1980, 21, 839.

[18] Jackson, A.; Wilson, N. D. V.; Gaekell, A. J.; Joule, J. A. J. Chem. Soc. C 1969, 2738.

[19] Bennasar, M.; Roca, T.; García-Díaz, D. J. Org. Chem. 2008, 73, 9033.

[20] Amat, M.; Perez, M.; Llor, N.; Escolano, C. J. Org. Chem. 2004, 69, 8681.

[21] Amat, M.; Perez, M.; Llor, N.; Escolano, C. Chem. Commun. 2004, 1602.

[22] Forns, P.; Diez, A.; Rubiralta, M. Tetrahedron 1996, 52, 3563.

[23] Micouin, L.; Diez, A.; Castells. J. Tetrahedron Lett. 1995, 36, 1693.

[24] Edward, S.; Tasber, E. S.; Garbaccio, R. M. Tetrahedron Lett. 2003, 44, 9185.

[25] Kametani, T.; Suzuki, T. J. Org. Chem. 1971, 36(9), 1291.

[26] Gràcia, J.; Casamitjana, N.; Bonjoch, J. J. Org. Chem. 1994, 59, 3939.

[27] Saito, M.; Kawamura, M.; Hiroya, K. Chem. Commun. 1997, 765.

[28] Kawamura, M.; Ogasawara, K. Tetrahedron Lett. 1995, 36, 3369.

[29] Saito, M.; Kawamura, M.; Ogasawara, K. Tetrahedron Lett. 1995, 36, 9003.

[30] Gilbert, B.; Duarte, A. P.; Nakagawa, Y. Tetrahedron 1965, 21, 1141.

[31] Joule, J. A.; Monteiro, H.; Durham, L. J. J. Chem. Soc. 1965, 4773.

[32] Farnsworth, N. R.; Svoboda, G. H.; Blomster, R. N. J. Pharm. Sci. 1968, 57, 2174

[33] Lim, K. H.; Low, Y. Y.; Kam, T.-S. Tetrahedron Lett. 2006, 5037.

[34] Bennasar, M. L.; Zulaica, E.; Sole, D. J. Org. Chem. 2009, 74, 8359.

[35] Bennasar, M. L.; Zulaica, E.; Sole, D. Tetrahedron 2007, 63, 861.

[36] Bennasar, M. L.; Zulaica, E.; Sole, D. Chem. Commun. 2009, 3372.

[37] Kettle, J. G.; Roberts, D.; Joule, J. A. Heterocycles 2010, 82, 349.

[38] Tarselli, M. A.; Raehal, K.; Brasher, A. K. Nat. Chem. 2011, 3, 449.

[39] Flight M. H. Nat. Rev. Drug Discovery 2011, 10, 494.

[40] Reisman, S. E. Nature 2011, 473, 458.

[41] Ball P. Nat. News 2011, 313.

[42] Walser, A.; Djerassi, C. Helv. Chim. Acta 1964, 47, 2072.

[43] Scott, A. I.; Yeh, C. L.; Greenslade, D. Chem. Commun. 1978, 947.

[44] Patir, S.; Ertürk, E. J. Org. Chem. 2011, 76, 335.

[45] Martin, C. L.; Nakamura, S.; Otte, R.; Overman, L. E. Org. Lett. 2011, 13(1), 138.

[46] Kuehne, M.; Wang, T.; Seraphin, D. J. Org. Chem. 1996, 7873.

[47] Rahman, A. u.; Mucaffar, A. Heterocycles 1985, 23, 2975.
文章导航

/