以柚皮苷为原料, 经过糖苷水解、脱氢、苄基保护、 O-甲基化、过氧丙酮(DMDO) 氧化或Algar-Flynn-Oyamada(AFO)反应和脱苄基保护等反应步骤, 半合成了山萘酚(1, Kaemferol), 5, 7, 4′-三甲氧基黄酮醇(2)、3, 5-二羟基-7, 4′-二甲氧基黄酮醇(3), 鼠李柠檬素(4, Rhamnocitrin)等4 种天然黄酮醇类和4, 6, 4’-三羟基二氢橙酮(5)、4-羟基-6, 4′-二甲氧基二氢橙酮(6)两种新的橙酮类化合物. 重点探讨了过氧丙酮(DMDO)直接氧化黄酮制备黄酮醇和AFO 法制备橙酮的合成方法, 改进优化了反应条件. 所有合成化合物的结构已通过1H NMR、MS 和IR 等波谱方法进行了确认. 该合成途径原料易得, 工艺简便, 收率较高, 具有较高的应用价值.
吴峥
,
蔡双莲
,
范文金
,
汪秋安
. 柚皮苷半合成生物活性黄酮醇和橙酮类化合物研究[J]. 有机化学, 2012
, 32(07)
: 1296
-1302
.
DOI: 10.6023/cjoc1112152
Four natural flavonols kaemferol (1), 3-hydroxy-5, 7, 4′-trimethoxy flavone (2) 3, 5-dihydroxy-7, 4′-dimethoxy flavone (3), rhamnocitrin (4) and two novel aurones 4, 6, 4′-trihydroxydihydroaurone (5), 4-hydroxy-6, 4′-dimethoxy dihydroaurone (6) were semi synthesized by reaction steps including glycoside hydrolysis, dehydrogenation, benzyl protection, O-methylation, DMDO oxidation or Algar-Flynn-Oyamade (AFO) reaction and debenzylation. The synthetic methods of DMDO oxidation for flavones to flavonols and AFO reaction for chalcones to aurones were efficient improved in the key steps. The structures of all synthetic compounds have been confirmed by NMR, MS and IR spectra. The synthetic methods have the advantages of easy availability of starting materials, simple operation and good yields, so it has considerable practical value.
[1] Mohamed, A. S.; Ma, G.L.; Li, X. H. Nuphavan, M. K.; Robert, L. G.; Chang. C. J. J. Nat. Prod. 1993, 56, 967-969.
[2] La, X. Q.; Zeng, Y.; Xu, M.; Zhang, Y. J., Nat. Prod., Res. Dev. 2011, 23, 569-599. (喇晓琴, 曾阳, 许敏, 张颖君, 天然产物研究与开发, 2011, 23,596-599)
[3] Sabrina, O.; Delphine, R.; Sebastien, B.; Anne, M. M.; Eric, P.; Ahcene, B. J. Med. Chem, 2006, 49, 329 333.
[4] Oyamada, B. J. Chem. Soc. Japan. 1934, 55:1256.
[5] Carolina, E.; Florencia, A.; Juan, A. A.; Jacob, O. M.; Charles, O.; Leonidah, K.; Federico, D. J. Agric. Food. Chem. 2010, 58, 2111-2115.
[6] Yuldashev, M. P. Chem. Nat. Compounds. 2007, 43, 34-36.
[7] Robert, W.; M, M. S. Organic Syntheses. 1998, 9, 288.
[8] Khan, M. K. J. Agric. Food. Chem. 2010, 58, 8437-8443.
[9] Janes, N. F. J. Chem. Soc. 1960, 2560-2565.
[10] Guider, J. M. J. Chem. Soc. 1955, 170-173.
[11] Scio, Elita. Phytochemistry. 2003, 64, 1125-1131.
[12] David. J. M.; Sidney. M. H. Organic Letters. 2005, 7, 1097-1099.
[13] Michael. F.; Wang, Z. X.; Shi, Y. J. Org. Chem. 1998, 63, 6425-6426.
[14] Waldemar, A.; Dieter, G. L.; Lazaros. H. J. Org. Chem. 1991, 56, 7292-729.
[15] Tim, E. A.; Mariana, E. S.; Bill. C. H.; et al. J. Am. Chem. Soc. 2009, 131, 1607-1616.
[16] Anastasia, D.; Maya, M.; Christos, A. K.; Dimitra, H. L.; Panagiotis, K. Bioorganic & Medicinal Chemistry. 2009, 17, 8073-8085.
[17] Gormley, T. R.; O’sullivan, W. I. Tetrahedron. 1973, 29, 369-373.
[18] Zembower, D. E.; Zhang, H. J. Org. Chem. 1998, 63, 9300.
[19] Dominguez, X. A.; Roehll, D. L.; Fuente, E. Phytochemistry 1973,12, 2060.
[20] Scheele, C.; Wollenweber, E.; Arriaga-Giner, F. J. J. Nat. Prod.1987, 50, 181.