综述与进展

过渡金属催化的芳香化合物三氟甲基化研究进展

  • 吕翠萍 ,
  • 沈其龙 ,
  • 刘丹
展开
  • a 沈阳化工大学化学工程学院 沈阳 110142;
    b 中国科学院上海有机化学研究所 中国科学院有机氟化学重点实验室 上海 200032

收稿日期: 2011-10-15

  修回日期: 2012-02-10

  网络出版日期: 2012-03-22

基金资助

上海市浦江人才计划(No. 11PJ1412200)资助项目.

Transition Metal-Catalyzed Arene Trifluoromethylation

  • L? Cuiping ,
  • Shen Qilong ,
  • Liu Dan
Expand
  • a College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142;
    b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2011-10-15

  Revised date: 2012-02-10

  Online published: 2012-03-22

Supported by

Project supported by the Shanghai Pujiang Program (No. 11PJ1412200).

摘要

向芳香化合物分子中引入三氟甲基在制药, 农用化学品和有机材料的砌块合成中有重大的意义. 由于过渡金属催化的反应反应条件温和, 底物适用性广等优点, 最近几年, 逐渐被科学家应用到芳香化合物的三氟甲基化中, 成为追捧的热点. 综述了近几年在利用过渡金属对芳香化合物进行的三氟甲基化中取得的重大进展.

本文引用格式

吕翠萍 , 沈其龙 , 刘丹 . 过渡金属催化的芳香化合物三氟甲基化研究进展[J]. 有机化学, 2012 , 32(08) : 1380 -1387 . DOI: 10.6023/cjoc1110151

Abstract

Incorporation of trifluoromethyl group into aromatic compounds is of great importance in the medicinal, agricultural, and material sciences. Owing to the mild reaction conditions and wide substrates scope, transition metal-catalyzed trifluoromethylation of arene substrates has attracted significant attention in the past few years. Herein, the recent progress in transition metal-catalyzed trifluoromethylation of arene substrates is surveyed and summarized.

参考文献

[1] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

[2] (a) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. (b) Kirsch, P.; Bremer, M. Angew. Chem., Int. Ed. 2000, 39, 4216.

[3] Wong. D. T.; Perry, K. W.; Bymaster, F. P. Nat. Rev. Drug Discovery 2005, 4, 764.

[4] Margot, P.; Huggenberger, F.; Amrein, J.; Weiss, B. BCPC Conf.-Pests. Dis. 1998, 2, 375.

[5] Jeschke, P.; Jeschke, P. ChemBioChem 2004, 5, 570.

[6] Reiffenrath, V.; Krause, J.; Plach, H. J.; Weber, G. Liq. Cryst. 1989, 5, 159.

[7] Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.

[8] Swarts, F. Bull. Acad. R. Med. Belg. 1892, 24, 415.

[9] (a) Boswell, G. A.; Pipka, Jr. W. C.; Schribner, R. M.; Tullock, C. W. Org. React. 1972, 21, 1 (b) Wang, C.-L. J. Org. React. 1985, 34, 319

[10] Kirsch, P. Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, Germany, 2004, p. 68.

[11] Tiers, G. V. D. J. Am. Chem. Soc. 1960, 82, 5513.

[12] Chen, Q.-Y. Li, Z.-T. J. Chem. Soc. 1993, 6, 645.

[13] Langlois, B.; Laurent, E.; Roidot, N. Tetrahedron Lett. 1991, 32, 7525.

[14] Kino, T.; Nagase, Y.; Ohtsuka, Y.; Yamamoto, K.; Uraguchi, D.; Tokuhisa, K.; Yamakawa, T. J. Fluorine Chem. 2010, 131, 98.

[15] Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14411.

[16] McLoughlin, V. C. R.; Thrower, J. US 3408411, 1968 [Chem. Abstr. 1968, 68, 11002].

[17] Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969, 4095.

[18] Kondratenko, N. V.; Vechirko, E. P.; Yagupolskii, L. M. Synthesis, 1980 932.

[19] (a) Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014. (b) Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1986, 108, 832.

[20] Chen, Q.-Y.; Wu, S.-W. Chem. Commun. 1989, 705.

[21] Urata, H.; Fuchikami, T. Tetrahedron Lett. 1991, 32, 91.

[22] Kamigata, N.; Ohtsuka, T.; Fukushima, T; Yoshida, M.; Shimizu, T. Perkin Ttrans. 1994, 1339.

[23] Ye, Y.; Lee, S. H.; Sanford, M. S. Org. Lett. 2011, 13, 5464.

[24] (a) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc. 2008, 130, 8600. (b) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A. Organometallics 2008, 27, 6233.

[25] Hartwig. J. F. Angew. Chem., Int. Ed. 2011, 50, 3793.

[26] Weng, Z.-Q.; Lee, R.; Jia, W.-G.; Yuan, Y.-F.; Wang, W.-F.; Huang, K.-W. Organometallics 2011, 30, 3229.

[27] Olesya, A.; Tomashenko, E. C.; Escudero, A.; Belmonte, M. M.; Grushin, V. V. Angew. Chem., Int. Ed. 2011, 50, 7655.

[28] Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 123, 1936.

[29] Chu, L.-L.; Qing, F.-L. Org. Lett. 2010, 12, 5060.

[30] Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 2011, 76, 1174.

[31] Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909.

[32] (a) Hughes, R. P. J. Organomet. Chem. 1990, 31, 183. (b) Morrison, J. A. J. Organomet. Chem. 1993, 35, 211.

[33] (a) Matsui, K.; Tobita, E.; Ando, M.; Kondo, K. Chem. Lett. 1981, 1719. (b) Langlois, B. R.; Roques, N. J. Fluorine Chem. 2007, 128, 1318.

[34] (a) Folleas, B.; Marek, I.; Normant, J.-F.; Saint-Jalmes, L. Tetrahedron 2000, 56, 275. (b) Prakash, G. K. S.; Hu, J.; Olah, G. A. Org. Lett. 2003, 5, 3253.

[35] (a) Prakash, G. K. S.; Yudin, A. K.; Deffieux, D.; Olah, G. A. Synlett 1996, 151. (b) Huang, D.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119, 3185.

[36] Knauber, T.; Arikan, F.; R鰏chenthaler, G.; Goo遝n, L. J. Chem. Eur. J. 2011, 17, 2689.

[37] Liu, T.-F.; Shen, Q. Org. Lett. 2011, 13, 2342.

[38] Xu, J.; Luo, D.-F.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300.

[39] Zhang, C.-P.; Cai, J.; Zhou, C.-B.; Wang, X.-P.; Zheng, X.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun, 2011, 47, 9516.

[40] Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 4632.

[41] Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644.

[42] Nicholas, D.; Ball, J.; Gary, B.; Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 7577.

[43] Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010, 328, 1679.

[44] Wang, X.; Truesdale, L.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 3648.

[45] Mu, X.; Chen, S.-J.; Zhen, X.-L.; Liu, G.-S. Chem. Eur. J. 2011, 17, 6039.
文章导航

/