综述与进展

过渡金属催化的吡啶的官能化

  • 张斌 ,
  • 周其忠 ,
  • 陈仁尔 ,
  • 蒋华江
展开
  • a 浙江工业大学药学院 杭州 310014;
    b 台州学院化学系 台州 317000

收稿日期: 2012-01-29

  修回日期: 2012-04-24

  网络出版日期: 2012-04-06

基金资助

国家自然科学基金(No.21172166)和浙江省自然科学基金(No.Y4100783)资助项目

Transition-Metal-Catalyzed Functionalization of Pyridines

  • Zhang Bin ,
  • Zhou Qizhong ,
  • Chen Rener ,
  • Jiang Huajiang
Expand
  • a College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014;
    b Department of Chemistry, Taizhou University, Taizhou 317000

Received date: 2012-01-29

  Revised date: 2012-04-24

  Online published: 2012-04-06

Supported by

Project supported by the National Natural Science Foundation of China (No.21172166) and the Natural Science Foundation of Zhejiang Province (No.Y4100783)

摘要

吡啶是药物和天然产物的重要骨架,是医药化工的重要的中间体.介绍了过渡金属催化的吡啶在2位、3位或4位发生的烷基化、烯基化和芳基化等C—H键活化反应,还概括了吡啶的官能化在药物和天然产物合成中的应用.

本文引用格式

张斌 , 周其忠 , 陈仁尔 , 蒋华江 . 过渡金属催化的吡啶的官能化[J]. 有机化学, 2012 , 32(9) : 1653 -1665 . DOI: 10.6023/cjoc1201291

Abstract

Pyridines are key backbones of drugs and natural products as well as the key intermediates of medicinal engineering. This paper summarizes transition-metal-catalyzed functionalization of pyridines via C—H activation such as alkylation, alkenylation and arylation etc. as well as their utilities in synthesis of drugs and natural products.

参考文献

[1] Wasa, M.; Worrell, B. T.; Yu, J. Angew. Chem., Int. Ed. 2010, 49, 1275.

[2] Mousseau, J. J.; Bull, J. A.; Charette, A. B. Angew. Chem., Int. Ed. 2010, 49, 1115.

[3] Vanderwal, C. D. J. Org. Chem. 2011, 76, 9555.

[4] Martin, D. B. C.; Nguyen, L. Q.; Vanderwal, C. D. J. Org. Chem. 2012, 77, 17.

[5] Nakao, Y. Synthesis 2011, 3209.

[6] Eisenstadt, A.; Giandomenico, C. M.; Frederick, M. F.; Laine, R. M. Organometallics 1985, 4, 2033.   

[7] Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778.

[8] Rodewald, S. Jordan, R. F. J. Am. Chem. Soc. 1994, 116, 4491.

[9] Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332.

[10] Yotphan, S.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2010, 12, 2978.

[11] Deng, G.; Li, C. Org. Lett. 2009, 11, 1171.

[12] Guan, B.; Hou, Z. J. Am. Chem. Soc. 2011, 133, 18086.

[13] Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720.

[14] Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872.

[15] Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448-2449.

[16] Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.

[17] Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.

[18] Song, G.; Gong, X.; Li, X. J. Org. Chem. 2011, 76, 7583.

[19] Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Baidossi, M.; Ponde, D. E.; Sasson, Y. J. Chem. Soc., Perkin Trans. 2 2000, 1809.

[20] Campeau, L.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020.

[21] Lariv閑, A.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52.

[22] Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822.

[23] Gong, X.; Song, G.; Zhang, H.; Li, X. Org. Lett. 2011, 13, 1766.

[24] Duric, S.; Tzschucke, C. C. Org. Lett. 2011, 13, 2310.

[25] Tan, Y.; Barrios-Landeros, F.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 3683.

[26] Tobisu, M.; Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070.

[27] Kobayashi, O.; Uraguchi, D.; Yamakawa, T. Org. Lett. 2009, 11, 2679.

[28] Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926.

[29] Do, H.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.

[30] Wen, J.; Qin, S.; Ma, L.; Dong, L.; Zhang, J.; Liu, S.; Duan, Y.; Chen, S.; Hu, C.; Yu, X. Org. Lett. 2010, 12, 2694.

[31] Li, M.; Hua, R. Tetrahedron Lett. 2009, 50, 1478.   

[32] Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J. Am. Chem. Soc. 2010, 132, 13194.

[33] Godula, K.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2005, 127, 3648.

[34] Kawashima, T.; Takao, T.; Suzuki, H. J. Am. Chem. Soc. 2007, 129, 11006.

[35] Moore, E. J.; Pretzer, W. R.; O'Connell, T. J.; Harris, J.; LaBounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114, 5888.

[36] Esteruelas, M. A.; Fern醤dez-Alvarez, F. J.; Oñate, E. J. Am. Chem. Soc. 2006, 128, 13044.

[37] Alvarez, E.; Conejero, S.; Paneque, M.; Petronilho, A.; Poveda, M. L.; Serrano, O.; Carmona, E. J. Am. Chem. Soc. 2006, 128, 13060.

[38] Correia, C. A.; Yang, L.; Li, C. Org. Lett. 2011, 13, 4581.

[39] Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyamaa, T.; Miyaura, N. Tetrahedron Lett. 2002, 43, 5649.   

[40] Hurst, T. E.; Macklin, T. K.; Becker, M.; Hartmann, E.; K黦el, W.; Salle, J. P.; Batsanov, A. S.; Marder, T. B.; Snieckus, V. Chem. Eur. J. 2010, 16, 8155.

[41] Murphy, J. M.; Liao, X.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 15434.

[42] Basolo, L.; Beccalli, E. M.; Borsini, E.; Broggini, G. Tetrahedron 2009, 65, 3486.   

[43] Ye, M.; Gao, G.; Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J. J. Am. Chem. Soc. 2011, 133, 19090.

[44] Ye, M.; Gao, G.; Yu, J. J. Am. Chem. Soc. 2011, 133, 6964.

[45] Li, B.; Shi, Z. Chem. Sci. 2011, 2, 488.

[46] Grigg, R.; Savic, V. Tetrahedron Lett. 1997, 38, 5737.   

[47] Mkhalid, I. A. I.; Coventry, D. N.; Albesa-Jove, D.; Batsanov, A. S.; Howard, J. A. K.; Perutz, R. N.; Marder, T. B. Angew. Chem., Int. Ed. 2006, 45, 489.

[48] Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 536.

[49] Cho, J.; Iverson, C. N.; Smith, III. M. R. J. Am. Chem. Soc. 2000, 122, 12868.

[50] Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 13666.

[51] Tsai, C.; Shih, W.; Fang, C.; Li, C.; Ong, T.; Yap, G. P. A. J. Am. Chem. Soc. 2010, 132, 11887.

[52] Guo, P.; Joo, J.; Rakshit, S.; Sames, D. J. Am. Chem. Soc. 2011, 133, 16338.

[53] Dong, H.; Latka, R. T.; Driver, T. G. Org. Lett. 2011, 13, 2726.

[54] Fisher, D. F.; Sarpong, R. J. Am. Chem. Soc. 2010, 132, 5926.

文章导航

/