综述与进展

水相钯催化Suzuki 反应

  • 刘宁 ,
  • 刘春 ,
  • 金子林
展开
  • 大连理工大学精细化工国家重点实验室 大连 116024

收稿日期: 2011-09-05

  修回日期: 2011-11-04

  网络出版日期: 2011-12-09

基金资助

国家自然科学基金(Nos. 20976024, 21076034)、大连理工大学离退休人员科研专项基金(No. DUTTX2011103)资助项目.

Palladium-Catalyzed Suzuki Reaction in Aqueous Media

  • Liu Ning ,
  • Liu Chun ,
  • Jin Zilin
Expand
  • State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024

Received date: 2011-09-05

  Revised date: 2011-11-04

  Online published: 2011-12-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20976024, 21076034) and the Special Research Foundation of Dalian University of Technology for Retired Professors (No. DUTTX 2011103).

摘要

钯催化的Suzuki 反应是构建Csp2—Csp2 键的主要方法之一, 已广泛应用于医药、天然产物及先进功能材料等联芳类化合物的合成. 近年来, 水相Suzuki 反应引起了人们的高度关注. 对以纯水及水/有机混溶剂为介质的水相Suzuki反应的研究进展作一综述, 特别是围绕如何解决水相Suzuki 反应活性的问题, 以催化体系为主线, 重点介绍了水溶性配体/钯、表面活性剂、微波促进的非水溶性配体/钯及无配体钯等催化体系在水相Suzuki 反应中的应用.

本文引用格式

刘宁 , 刘春 , 金子林 . 水相钯催化Suzuki 反应[J]. 有机化学, 2012 , 32(05) : 860 -876 . DOI: 10.6023/cjoc1109052

Abstract

The palladium-catalyzed Suzuki cross-coupling reaction has become one of the most powerful tools for sp2-sp2 carbon-carbon bond formation. This coupling reaction is increasingly being applied in the synthesis of pharmaceuticals, natural products and advanced functional materials. In recent years, developing aqueous systems for the Suzuki reaction has attracted attention from many researchers. This paper reviews the recent progress in the Suzuki reaction using neat water and aqueous-organic co-solvent as reaction media. A large number of different strategies for the Suzuki reaction in water have been developed, in which the authors aim at the solutions to the enhancement of the reactivity of the palladium-catalyzed Suzuki reaction using water-soluble ligands, surfactants, microwave assistance, or ligand-free system.

参考文献

[1] Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice,Oxford University Press, New York, 1998.

[2] Anastas, P. T.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.  

[3] Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102,3667.  

[4] Leeke, G. A.; Al-Duri, B.; Seville, J. P. K.; Smith, C. J.; Lee, C. K.Y.; Holmes, A. B.; McConvey, I. F. Org. Process Res. Dev. 2007,11, 144.  

[5] Watanabe, M.; Sato, T.; Inomata, H.; Smith, R. L.; Arai, K.; Kruse,A.; Dinjus, E. Chem. Rev. 2004, 104, 5803.  

[6] Curran, D. P. J. Fluorine Chem. 2008, 129, 898.  

[7] Li, C.-J. Chem. Rev. 2005, 105, 3095.  

[8] Li, C.-J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68.  

[9] Cornils, B. Angew. Chem., Int. Ed. 1995, 34, 1575.  

[10] Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.  

[11] Shen, X.; Jones, G. O.; Watson, D. A.; Bhayana, B.; Buchwald, S.L. J. Am. Chem. Soc. 2010, 132, 11278.  

[12] Lundin, P. M.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11027.  

[13] Li, W.-Y.; Zhao, D.-M.; Xiong, X.-Q.; Ma, Q.-Q.; Cheng, M.-S.Chin. J. Org. Chem. 2011, 31, 784 (in Chinese).(李文燕, 赵冬梅, 熊绪琼, 马倩倩, 程卯生, 有机化学, 2011, 31,784.)

[14] Shaughnessy, K. H. Chem. Rev. 2009, 109, 643.  

[15] Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. ChemSusChem2010, 3, 502.  

[16] Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563.  

[17] Leadbeater, N. E. Chem. Commun. 2005, 2881.

[18] Casalnuovo, A. L.; Calabrese, J. C. J. Am. Chem. Soc. 1990, 112,4324.  

[19] Sollewijn Gelpke, A. E.; Veerman, J. J. N.; Goedheijt, M. S.;Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Hiemstra, H.Tetrahedron 1999, 55, 6657.  

[20] Dupuis, C.; Adiey, K.; Charruault, L.; Michelet, V.; Savignac, M.;Genêt, J.-P. Tetrahedron Lett. 2001, 42, 6523.  

[21] Moore, L. R.; Shaughnessy, K. H. Org. Lett. 2004, 6, 225.  

[22] Moore, L. R.; Western, E. C.; Craciun, R.; Spruell, J. M.; Dixon, D.A.; O'Halloran, K. P.; Shaughnessy, K. H. Organometallics 2008,27, 576.  

[23] Brown, W. S.; Boykin, D. A. D.; Sonnier Jr, M. Q.; Clark, W. D.;Brown, F. V.; Shaughnessy, K. H. Synthesis 2008, 1965.  

[24] Shaughnessy, K. H.; Booth, R. S. Org. Lett. 2001, 3, 2757.  

[25] Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1991, 113, 7411.  

[26] Cho, S. Y.; Kang, S. K.; Ahn, J. H.; Ha, J. D.; Choi, J.-K.Tetrahedron Lett. 2006, 47, 5237.  

[27] Beller, M.; Krauter, J. G. E.; Zapf, A. Angew. Chem., Int. Ed. 1997,36, 772.  

[28] Ueda, M.; Nishimura, M.; Miyaura, N. Synlett 2000, 856.  

[29] Nishimura, M.; Ueda, M.; Miyaura, N. Tetrahedron 2002, 58, 5779.  

[30] Konovets, A.; Penciu, A.; Framery, E.; Percina, N.; Goux-Henry,C.; Sinou, D. Tetrahedron Lett. 2005, 46, 3205.  

[31] Fleckenstein, C. A.; Plenio, H. Green Chem. 2007, 9, 1287.  

[32] Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44,6173.  

[33] Marziale, A. N.; Faul, S. H.; Reiner, T.; Schneider, S.; Eppinger, J.Green Chem. 2010, 12, 35.  

[34] Marziale, A. N.; Jantke, D.; Faul, S. H.; Reiner, T.; Herdtweck, E.;Eppinger, J. Green Chem. 2011, 13, 169.  

[35] Liu, N.; Liu, C.; Yan, B.; Jin, Z. Appl. Organomet. Chem. 2011, 25,168.  

[36] Jin, Z. L.; Zheng, X. L.; Fell, B. J. Mol. Catal. A: Chem. 1997, 116,55.  

[37] Liu, N.; Liu, C.; Jin, Z. J. Organomet. Chem. 2011, 696, 2641.  

[38] Inés, B.; SanMartin, R.; Churruca, F.; Domínguez, E.; Urtiaga, M.K.; Arriortua, M. I. Organometallics 2008, 27, 2833.  

[39] Zhao, X.-M.; Hao, X.-Q.; Wang, K.-L.; Liu, J.-R.; Song, M.-P.; Wu,Y.-J. Transition Met. Chem. 2009, 34, 683.  

[40] Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. J. Organomet. Chem.2010, 695, 2093.  

[41] Weeden, J. A.; Huang, R.; Galloway, K. D.; Gingrich, P. W.; Frost,B. J. Molecules 2011, 16, 6215.  

[42] Liu, Y.; Wu, Y.; Xi, C. Appl. Organomet. Chem. 2009, 23, 329.  

[43] Fliedel, C.; Schnee, G.; Braunstein, P. Dalton Trans. 2009, 2474.

[44] Liu, N.; Liu, C.; Jin, Z. Chin. J. Catal. 2010, 31, 1316.

[45] Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.  

[46] Wu, W.-Y.; Chen, S.-N.; Tsai, F.-Y. Tetrahedron Lett. 2006, 47,9267.  

[47] Pawar, S. S.; Uppalla, L. S.; Shingare, M. S.; Thore, S. N.Tetrahedron Lett. 2008, 49, 5858.  

[48] Adidou, O.; Goux-Henry, C.; Safi, M.; Soufiaoui, M.; Framery, E.Tetrahedron Lett. 2008, 49, 7217.  

[49] Mai, W.; Gao, L. Synlett 2006, 2553.  

[50] Zhou, J.; Guo, X.; Tu, C.; Li, X.; Sun, H. J. Organomet. Chem.2009, 694, 697.  

[51] Li, S.; Lin, Y.; Cao, J.; Zhang, S. J. Org. Chem. 2007, 72, 4067.  

[52] Kostas, I. D.; Coutsolelos, A. G.; Charalambidis, G.; Skondra, A.Tetrahedron Lett. 2007, 48, 6688.  

[53] Conelly-Espinosa, P.; Morales-Morales, D. Inorg. Chim. Acta 2010,363, 1311.  

[54] Gülcemal, S.; Kani, I.; Yilmaz, F.; cetinkaya, B. Tetrahedron 2010,66, 5602.  

[55] Fleckenstein, C.; Roy, S.; Leuthäuβer, S.; Plenio, H. Chem. Commun. 2007, 2870.

[56] Roy, S.; Plenio, H. Adv. Synth. Catal. 2010, 352, 1014.  

[57] Godoy, F.; Segarra, C.; Poyatos, M.; Peris, E. Organometallics2011, 30, 684.  

[58] Tu, T.; Feng, X.; Wang, Z.; Liu, X. Dalton Trans. 2010, 39, 10598.  

[59] Bai, S.-Q.; Hor, T. S. A. Chem. Commun. 2008, 3172.  

[60] Li, H.; Wu, Y. Appl. Organomet. Chem. 2008, 22, 233.  
文章导航

/