抗肿瘤活性四氢异喹啉类抗生素的生物合成研究进展
收稿日期: 2012-07-05
修回日期: 2012-07-29
网络出版日期: 2012-07-18
基金资助
国家自然科学基金(Nos.81102337, 20832009)和国家重点基础研究发展计划(No.2012CB721100)资助项目
Biosynthetic Progress of the Tetrahydroisoquinoline Antitumor Antibiotics
Received date: 2012-07-05
Revised date: 2012-07-29
Online published: 2012-07-18
Supported by
Project supported by the National Natural Science Foundation of China (Nos.81102337, 20832009) and the National Basic Research Program of China (No.2012CB721100)
四氢异喹啉类生物碱因其独特的化学结构和良好的抗肿瘤活性,长期以来备受化学家和生物学家的广泛关注.特别是近十年来,随着生物技术的不断进步,有关这类抗生素生物合成的研究取得了突飞猛进的发展.主要综述了该家族成员如Safracin B,Saframycin A,Naphthyridinomycin,Quinocarcin,Ecteinascidin 743等近年来生物合成研究的主要成果,特别是有关这类化合物共有的核心结构四氢异喹啉环的前体来源和前体的生物合成途径,以及四氢异喹啉环独特的形成机制.
关键词: 四氢异喹啉生物碱; 四氢异喹啉环; 前体来源; 生物合成途径; Pictet-Spengler 反应
唐满成 , 唐功利 . 抗肿瘤活性四氢异喹啉类抗生素的生物合成研究进展[J]. 有机化学, 2012 , 32(9) : 1568 -1576 . DOI: 10.6023/cjoc201207006
Due to the unique chemical structures and antitumor activity, tetrahydroisoquinoline alkaloids have long been the focus of widespread concern of chemists and biologists. In particular, with the continuous progress of new biotechnology, the biosynthetic studies of this type of antibiotics have made rapid development over the past decade. In this paper, the main achievements of these studies are reviewed, including the biosynthesis of safracin B, saframycin A, naphthyridinomycin, quinocarcin, and ecteinascidin 743, especially the biosynthetic studies of their core tetrahydroisoquinoline ring structure, such as the core structure precursor resources, the biosynthetic pathway of these precursors, and the formation mechanism of the tetrahydroisoquinoline ring.
[1] Kluepfel, D.; Baker, H. A.; Piattoni, G.; Sehgal, S. N.; Sidorowicz, A.; Singh, K.; Vezina, C. J. Antibiot. 1975, 28, 497.
[2] Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.
[3] Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug. Discovery 2009, 8, 69.
[4] Fukuyama, T.; Sachleben, R. A. J. Am. Chem. Soc. 1982, 104, 4957.
[5] (a) Siengalewicz, P.; Rinner, U.; Mulzer, J. Chem. Soc. Rev. 2008, 37, 2676.
(b) Liao, X.; Dong, W.; Liu, W.; Chen, S.; Liu, Z. Chin. J. Org. Chem. 2010, 30, 317 (in Chinese)(廖祥伟, 董文芳, 刘伟, 陈世智, 刘站柱, 有机化学, 2010, 30, 317.)
(c) Wang, Y.; Tang, Y.-F.; Liu, Z.-Z.; Chen, S.-Z.; Liang, X.-T. Chin. J. Org. Chem. 2005, 25, 42 (in Chinese) (王晔, 唐叶峰, 刘站柱, 陈世智, 梁晓天, 有机化学, 2005, 25, 42.)
[6] (a) Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 9202.
(b) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552.
(c) Chen, J.; Chen, X.; Zhu, J. J. Am. Chem. Soc. 2006, 128, 87.
(d) Zheng, S.; Chan, C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2006, 45, 1754.
[7] (a) Zmijewski, M. J., Jr.; Mikolajczak, M.; Viswanatha, V.; Hruby, V. J. Am. Chem. Soc. 1982, 104, 4969.
(b) Zmijewski, M. J., Jr.; Palaniswamy, V. A.; Gould, S. J. J. Chem. Soc., Chem. Commun. 1985, 1261.
(c) Zmijewski, M. J., Jr. J. Antibiot. 1985, 38, 819.
(d) Palaniswamy, V. A.; Gould, S. J. Am. Chem. Soc. 1986, 108, 5651.
[8] (a) Mikami, Y.; Takahashi, K.; Yazawa, K.; Arai, T.; Namikoshi, M.; Iwasaki, S.; Okuda, S. J. Biol. Chem. 1985, 260, 344.
(b) Arai, T.; Yazawa, K.; Takahashi, K.; Maeda, A.; Mikami, Y. Antimicrob. Agents Chemother. 1985, 28, 5.
[9] (a) Kerr, R. G.; Miranda, N. F. J. Nat. Prod. 1995, 58, 1618.
(b) Jeedigunta, S.; Krenisky, J. M.; Kerr, R. G. Tetrahedron 2000, 56, 3303.
[10] Pospiech, A.; Cluzel, B.; Bietenhader, J.; Schupp, T. Microbiology 1995, 141, 1793.
[11] Velasco, A.; Acebo, P.; Gomez, A.; Schleissner, C.; Rodriguez, P.; Aparicio, T.; Conde, S.; Munoz, R.; De La Calle, F.; Luis Garcia, J.; Sanchez-Puelles, J. M. Mol. Microbiol. 2005, 56, 144.
[12] Li, L.; Deng, W.; Song, J.; Ding, W.; Zhao, Q. F.; Peng, C.; Song, W. W.; Tang, G. L.; Liu, W. J. Bacteriol. 2008, 190, 251.
[13] Rath, C. M.; Janto, B.; Earl, J.; Ahmed, A.; Hu, F. Z.; Hiller, L.; Dahlgren, M.; Kreft, R.; Yu, F.; Wolff, J. J.; Kweon, H. K.; Christiansen, M. A.; Håkansson, K.; Williams, R. M.; Ehrlich, G. D.; Sherman, D. H. ACS Chem. Biol. 2011, 6, 1244.
[14] Koketsu, K.; Minami, A.; Watanabe, K.; Oguri, H.; Oikawa, H. Curr. Opin. Chem. Biol. 2012, 16, 142.
[15] Fu, C.-Y.; Tang, M.-C.; Peng, C.; Li, L.; He, Y.-L.; Liu, W.; Tang, G.-L. J. Microbiol. Biotechnol. 2009, 19, 439.
[16] Tang, M.-C.; Fu, C.-Y.; Tang, G.-L. J. Biol. Chem. 2012, 287, 5112.
[17] Nelson, J. T.; Lee, J.; Sims, J. W.; Schmidt, E. W. Appl. Environ. Microbiol. 2007, 73, 3575.
[18] Peng, C.; Pu, J.-Y.; Song, L.-Q.; Jian, X.-H.; Tang, M.-C.; Tang, G.-L. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8540.
[19] Hawkins, K. M.; Smolke, C. D. Nat. Chem. Biol. 2008, 4, 564.
[20] Koketsu, K.; Watanabe, K.; Suda, H.; Oguri, H.; Oikawa, H. Nat. Chem. Biol. 2010, 6, 408.
[21] (a) Cuevas, C.; Francesch, A. Nat. Prod. Rep. 2009, 26, 322.
(b) Cuevas, C.; Pérez, M.; Martín, M. J.; Chicharro, J. L.; Fernández-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de La Calle, F.; García, J.; Polanco, C.; Rodríguez, I.; Manzanares, I. Org. Lett. 2000, 2, 2545.
/
〈 |
|
〉 |