学术动态

流动化学在药物合成中的最新进展

  • 赵东波
展开
  • 拜耳技术工程(上海)有限公司 上海201507

收稿日期: 2012-08-03

  修回日期: 2012-09-26

  网络出版日期: 2012-10-08

Updated Applications of Flow Chemistry in Pharmaceutical Synthesis

  • Zhao Dongbo
Expand
  • Bayer Technology and Engineering (Shanghai) Co. Ltd., Shanghai 201507

Received date: 2012-08-03

  Revised date: 2012-09-26

  Online published: 2012-10-08

摘要

作为不断成熟的一项过程强化技术, 流动化学近十年来不论在学术研究还是工业应用方面均取得令人瞩目的发展; 综述了流动化学技术在药物合成中的最新研发进展. 当前的流动化学技术与其早期的研究相比有许多突破, 例如不再局限于某类反应可行性概念的验证、越来越多的知名国际制药企业公开发展该技术以及已经有不少相关多步全合成成功案例的报道等. 在简单介绍流动化学的优势、存在的挑战和应对之策之后, 列举大量实例从不同工艺类型重点介绍流动化学在多步复杂药物合成工艺中的最新进展.

本文引用格式

赵东波 . 流动化学在药物合成中的最新进展[J]. 有机化学, 2013 , 33(02) : 389 -405 . DOI: 10.6023/cjoc201208002

Abstract

As a further-developing process intensification technology, flow chemistry has achieved a striking development either in academic or industrial area in the past decade. Updated applications of flow chemistry in pharmaceutical synthesis are overviewed. Compared with its early research and development (R&D), current flow chemistry has already shown a lot of breakthroughs. For instance, no more limitations to the proof of feasibility concept for some certain reaction, public development of this technology by more and more distinguished international pharmaceutical companies and quite a few corresponding reports of successful examples about multistep total synthesis of active pharmaceutical ingredients (APIs). Different process categorizations are emphasized with many API syntheses to demonstrate the up-to-date progress of this topic, after a brief introduction of the advantages, existing challenges and the corresponding solutions for flow chemistry.

参考文献

[1] (a) Manz, A.; Graber, N.; Widmer, H. M. Sens. Actuators B 1990, 1, 244.

(b) http://pubs.rsc.org/en/journals/journalissues/lc.

(c) Haswell, S. J.; Middleton, R. J.; O’Sullivan, B.; Skelton, V.; Wattsa, P.; Styringb, P. Chem. Commun. 2001, 391.

(d) http://en.wikipedia.org/wiki/Flow_chemistry.

(e) http://www.jflowchemistry.com.

(f) Elizabeth, F. New Synthetic Technologies in Medicinal Chemistry, RSC publishing, 2012.

[2] Some selected books on Microreaction technology, see: (a) Ehrfeld W.; Hessel V.; Loewe, H. Micro reactors: New Technology for Modern Chemistry, Wiley-VCH, Weinheim, 2000.

(b) Wirth, T. Microreactors in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2008.

(c) Yoshida, J.-I. Flash Chemistry: Fast Organic Synthesis in Microsystems, Wiley-VCH, Weinheim, 2008.

(d) Wiles, C.; Watts, P. Micro Reaction Technology in Organic Synthesis, CRC Press Inc., Boca Raton, 2011.

[3] Some selected international conferences on Microreaction technology, see: (a) International Conference on Microreaction Technology, 19972012.

(b) International Symposium on Micro Chemical Process and Synthesis, 2008.

(c) The 2nd Asia-Pacific Chemical and Biological Microfluidics Conference, 2011.

(d) The 3rd European Conference on Microfluidics, 2012.

[4] Some review articles of flow chemistry on pharmaceutical synthesis, see: (a) Kockmann, N.; Roberge, D. M. Chem. Eng. Technol. 2009, 32, 1682.

(b) Malet-Sanz, L.; Susanne, F. J. Med. Chem. 2012, 55, 4062.

(c) Anderson, N. G. Org. Process Res. Dev. 2012, 16, 852.

[5] (a) Schwesinger, N.; Marufke, O.; Qiao, F.; Devant, R.; Wurziger, H. In Process Miniaturization: 2nd International Conference on Microreaction Technology, Eds: Ehrfeld, W.; Rinard, I. H.; Wegeng, R. S., AIChE, New Orleans, 1998, p. 124.

(b) Krummradt, H.; Kopp, U.; Stoldt, J. In Microreaction Technology: 3 rd International Conference on Microreaction Technology, Ed.: Ehrfeld, W., Springer-Verlag, Berlin, 2000, p. 181.

[6] (a) Wörz, O.; Jäckel, K.-P.; Richter, T.; Wolf, A. Chem. Ing. Tech. 2000, 72, 460.

(b) Wörz, O.; Jäckel, K.-P.; Richter, T.; Wolf, A. Chem. Eng. Technol. 2001, 24, 138.

[7] (a) Skelton, V.; Grenway, G. M.; Haswell, S. J.; Styring, P.; Morgan, D. O.; Warrington, B. H.; Wong, S. Y. F. Analyst 2001, 126, 11.

(b) Skelton, V.; Greenway, G. M.; Haswell, S. J.; Styring, P.; Morgan, D. O.; Warrington, B. H.; Wong, S. 4th International Conference on Microreaction Technology, Atlanta, USA, 2001, p. 78.

[8] (a) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. Lab Chip 2001, 1,100.

(b) Watts, P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E. Lab Chip 2002, 2,141.

(c) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. Lab Chip 2004, 4, 171.

[9] (a) Fernandez-Suarez, M.; Wong, S.Y. F.; Warrington, B. H. Lab on Chip 2002, 2,170.

(b) Garcia-Egido, E.; Spikmans, V.; Wong, S. Y. F.; Warrington, B. H. Lab Chip 2003, 3, 67.

[10] (a) Yoshida, J.-I.; Okamoto, H. In Advanced Micro and Nanosystems Vol. 5. Micro Process Engineering, Ed.: Kockmann, N., WILEY-VCH, Weinheim, 2006.

(b) Kawaguchi, T.; Miyata, H.; Ataka, K.; Mae, K.; Yoshida, J.-I. Angew. Chem., Int. Ed. 2005, 44, 2413.

[11] (a) Bohn, L.; Braune, S.; Kotthaus, M.; Kraut, M.; Pöchlauer, P. Vorbach, M.; Wenka, A.; Schubert, K. 9th International Conference on Microreaction Technology, Potsdam, 2006.

(b) Ondrey, G. Chem. Eng. 2011, 118, 16.

[12] (a) Roberge, D. M.; Bieler, N.; Thalmann, M. PharmaChem 2006, 28, 14.

(b) Roberge, D. M. AIChE Spring National Meeting, Houston, TX, 2007, published on CD.

(c) Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D. M. Chem. Eur. J. 2008, 14, 7470.

[13] (a) Malet-Sanz, L.; Madrzak, J.; Holvey, R. S.; Underwood, T. Tetrahedron Lett.2009, 50, 7263.

(b) Malet-Sanz, L.; Madrzak, J.; Ley, S. V.; Baxendale, I. R. Org. Biomol. Chem. 2010, 8, 5324.

(c) Grafton, M.; Mansfield, A. C.; Fray, M. J. Tetrahedron Lett. 2010, 51, 1026.

[14] (a) Gutmann, B.; Roduit, J. P.; Roberge, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2010, 49, 7101.

(b) Ye, X.; Johnson, M. D.; Diao, T.; Yates, M. H.; Stahl, S. S. Green Chem. 2010, 12, 1180.

[15] Pelleter, J.; Renaud, F. Org. Process Res. Dev. 2009, 13, 698.

[16] Abele, S.; Ho?ck, S.; Schmidt, G.; Funel, J.-A.; Marti, R. Org. Process Res. Dev. 2012, 16, 1114.

[17] Some selected recent review articles on flow chemistry, see: (a) Wiles, C.; Watts, P. Chem. Commun. 2011, 47, 6512.

(b) Calabrese, G. S.; Pissavini, S. AIChE 2011, 57, 828.

(c) Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 7502.

(d) Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal. 2012, 354, 17.

[18] Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318.

[19] Some articles about continuous vs. batch, see: (a) Valera, F. E.; Quaranta, M.; Moran, A.; Blacker, J.; Armstrong, A.; Cabral, J. T.; Blackmond, D. G. Angew. Chem., Int. Ed. 2010, 49, 2478.

(b) Schaber, S. D.; Gerogiorgis, D. I.; Ramachandran, R.; Evans, J. M. B.; Barton, P. I.; Trout, B. L. Ind. Eng. Chem. Res. 2011, 50, 10083. Solid-involved flow process, see:

(c) Kelly, C. B.; Lee, C. X.; Leadbeater, N. E. Tetrahedron Lett. 2011, 52, 263.

(d) Sedelmeier, J.; Ley, S. V.; Baxendale, I. R.; Baumann, M. Org. Lett. 2010, 12, 3618.

(e) Zhao, C.; He, L.; Qiao, S. Z.; Middelberg, A. P. J. Chem. Eng. Sci. 2011, 66, 1463.

(f) Hartman, R. L.; Naber, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F. Org. Process Res. Dev. 2010, 14, 1347.

[20] Lee, C.-C.; Sui, G.; Elizarov, A.; Shu, C. J.; Shin, Y.-S.; Dooley, A. N.; Huang, J.; Daridon, A.; Wyatt, P.; Stout, D.; Kolb, H. C.; Witte, O. N.; Satyamurthy, N.; Heath, J. R.; Phelps, M. E.; Quake, S. R.; Tseng, H.-R. Science 2005, 310, 1793.

[21] Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. F. Synlett 2006, 427.

[22] Zhang, X.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455.

[23] (a) Kim, H.; Nagaki, A.; Yoshida, J.-i. Nat. Commun. 2011, 2, 264. (b) Gustafsson, T.; So?rensen, H.; Ponte?n, F. Org. Process Res. Dev. 2012, dx.doi.org/10.1021/op200340c.

[24] (a) Hogan, J. Nature 2006, 442, 351.

(b) Hübner, S.; Bentrup, U.; Budde, U.; Lovis, K.; Dietrich, T.; Freitag, A.; Küpper, L.; Jähnisch, K. Org. Process Res. Dev. 2009, 13, 952.

[25] (a) Jähnisch, K.; Dingerdissen, U. Chem. Eng. Technol. 2005, 28, 426.

(b) Lévesque, F.; Seeberger, P. H. Org. Lett. 2011, 13, 5008-5011.

[26] (a) Oelgemöller, M. Chem. Eng. Technol. 2012, 35, 1.

(b) Shinichiro, F.; Nobutake, T.; Yoshida, F.; Yoshida, H.; Doi, T.; Takahashi, T. Chem. Commun. 2010, 46, 8722.

[27] (a) http://en.wikipedia.org/wiki/Lasker_Award.

(b) Dhainaut, J.; Dlubala, A.; Guevel, R.; Medard, A.; Oddon, G.; Raymond, N.; Turconi, J. WO 2011/026865, 2011[Chem. Abstr. 2011, 154, 310801].

(c) Le?vesque, F.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 1706.

[28] (a) Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. Science 2004, 304, 1305

(b) Jones, R. V.; Godorhazy, L.; Varga, N.; Szalay, D.; Urge, L.; Darvas, F. J. Comb. Chem. 2006, 8, 110.

(c) http://www.thalesnano.com/products/h-cube

[29] (a) Ley, S. V.; Schucht, O.; Thomas, A. W.; Murray, P. J. J. Chem. Soc., Perkin Trans. 1 1999, 1251.

(b) Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby, S.; Tranmer, G. K. Chem. Commun. 2006, 2566.

[30] (a) Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat. Rev. Drug Discovery 2002, 1, 493.

(b) Arora, A.; Scholar, E. M. J. Pharmacol. Exp. Ther. 2005, 315, 971.

(c) Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. Chem. Commun. 2010, 46, 2450.

[31] (a) Willging, E. M. Anal. Chem. 1987, 59, 938.

(b) Loupy, A. Microwaves in Organic Synthesis, John Wiley, New York, 2002, p. 61.

[32] (a) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027.

(b) Glasnova, T. N.; Kappe, C. O. Adv. Synth. Catal. 2010, 352, 3089.

(c) Gustafsson, T.; Pontn, F.; Seeberger, P. H. Chem. Commun. 2008, 1100.

(d) Bedore, M. W.; Zaborenko, N.; Jensen, K. F.; Jamison, T. F. Org. Process Res. Dev. 2010, 14, 432.

(e) Glasnov, T. N.; Findenig, S.; Kappe, C. O. Chem. Eur. J. 2009, 15, 1001.

(f) Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2010, 49, 7101.

[33] (a) Kim, E. G.; Schmidt, K.; Caseri, W. R.; Kreouzis, T.; Stingelin-Stutzmann, N.; Bredas, J. L. Adv. Mater. 2006, 18, 2039.

(b) Caseri, W. R.; Platinum Met. Rev. 2004, 48, 91.

(c) Pedrick, E. A.; Leadbeater, N. E. Inorg. Chem. Commun. 2011, 14, 481.

[34] Bogdan, A. R.; Poe, S. L.; Kubis, D. C.; Broadwater, S. J.; McQuade, D. T. Angew. Chem., Int. Ed. 2009, 48, 8547.

[35] Baumann, M.; Baxendale, I. R.; Brasholz, M.; Hayward, J. J.; Ley, S. V.; Nikbin, N. Synlett 2011, 1375.

[36] Cervera-Padrell, A. E.; Nielsen, J. P.; Pedersen, M. J.; Christensen, K. M.; Mortensen, A. R.; Skovby, T.; Dam-Johansen, K.; Kiil, S.; Gernaey, K. V. Org. Process Res. Dev. 2012, 16, 901.

[37] (a) Moorhouse, A. D.; Moses, J. E. Chem. Soc. Rev. 2007, 36, 1249.

(b) Baxendale, I. R.; Ley, S. V.; Mansfield, A. C.; Smith, C. D. Angew. Chem., Int. Ed. 2009, 48, 4017.

[38] (a) Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville, A.-C.; Coste, H.; Linget, J.-M.; Kirilovsky, J.; Hyafil, F.; Labaudinière, R. J. Med. Chem. 2003, 46, 4533.

(b) Mezencev, R.; Updegrove, T.; Kutschy, P.; Repovská, M.; McDonald, J. F. J. Nat. Med. 2011, 65, 488.

(c) Moody, C. J.; Roffey, J. R. A.; Swann, E.; Lockyer, S.; Houlbrook, S.; Stratford, I. J. Anti-Cancer Drugs 1999, 10, 577.

(d) Pagano, N; Heil, M. L.; Cosford, N. D. P. Synthesis 2012, 2537.

[39] Bonrath, W.; Karge, R.; Netscher, T. J. Mol. Catal. B: Enzym. 2002, 1920, 67.

[40] Schwalbe, T.; Autze, V.; Wille, G. Chimia 2002, 56, 636.

[41] Choe, J.; Song, K.-H.; Kwon, Y. 4th Asia-Pacific Chemical Reaction Engineering Symposium, Gyeongju, Korea, 2005, p. 435.

[42] Sugimoto, A.; Sumino, Y.; Takagi, M.; Fukuyama, T.; Ryu, I. Tetrahedron Lett. 2006, 47, 6197.

[43] Pitts, M. R.; McCormack, P.; Whittall, J. Tetrahedron 2006, 62, 4705.

[44] Gustafsson, T.; Pontén, F.; Seeberger, P. H. Chem. Commun. 2008, 1100.

[45] LaPorte, T. L.; Hamedi, M.; DePue, J. S.; Shen, L.; Watson, D.; Hsieh, D. Org. Process Res. Dev. 2008, 12, 956.

[46] Grant, D.; Dahl, R.; Cosford, N. D. P. J. Org. Chem. 2008, 73, 7219.

[47] Kopach, M. E.; Murray, M. M.; Braden, T. M.; Kobierski, M. E.; Williams, O. L. Org. Process Res. Dev.2009, 13, 152.

[48] Buddoo, S.; Siyakatshana, N.; Zeelie, B.; Dudas, J. Chem. Eng. Process. 2009, 48, 1419.

[49] Tanaka, K.; Miyagawa, T.; Fukase, K. Synlett 2009, 1571.

[50] Tanaka, K.; Fukase, K. Org. Process Res. Dev.2009, 13, 983.

[51] Bogdan, A. R.; James, K. Chem. Eur. J. 2010, 16, 14506.

[52] Brasholz, M.; Johnson, B. A.; Macdonald, J. M.; Polyzos, A.; Tsanaktsidis, J.; Saubern, S.; Holmes, A. B.; Ryan, J. H. Tetrahedron 2010, 66, 6445.

[53] Qian, Z.; Baxendale, I. R.; Ley, S. V. Synlett 2010, 505.

[54] Brasholz, M.; Macdonald, J. M.; Saubern, S.; Ryan, J. H.; Holmes, A. B. Chem. Eur. J. 2010, 16, 11471.

[55] Qian, Z.; Baxendale, I. R.; Ley, S. V. Chem. Eur. J. 2010, 16, 12342.

[56] Noel, T.; Kuhn, S; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 5943.

文章导航

/