研究简报

全氟丁基磺酸锡催化醛烯丙基化和Mukaiyama-aldol反应

  • 刘毅 ,
  • 王勰 ,
  • 陈锦杨 ,
  • 李宁波 ,
  • 许新华
展开
  • a 湖南机电职业技术学院生物与化学工程系 长沙 410151;
    b 湖南大学化学化工学院 长沙 410082

收稿日期: 2012-09-22

  修回日期: 2012-10-21

  网络出版日期: 2012-11-02

基金资助

国家自然科学基金(Nos. 21172061, 21273068)资助项目.

Bisperfluorobutylsulfonate Bisbutyltin Catalyzed Allylation and Mukaiyama-aldol Reaction of Aldehyde

  • Liu Yi ,
  • Wang Xie ,
  • Chen Jinyang ,
  • Li Ningbo ,
  • Xu Xinhua
Expand
  • a Department of Biological and Chemical Engineering, Hunan Mechanical and Electrical Polytechnic, Changsha 410151;
    b College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082

Received date: 2012-09-22

  Revised date: 2012-10-21

  Online published: 2012-11-02

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21172061, 21273068).

摘要

二丁基二氯化锡与全氟丁基磺酸银在丙酮中室温反应, 得到二丁基二全氟丁基磺酸锡. 该配合物在空气中放置2 d, 1H NMR表明其结构未发生变化, TG-DSC表明在220 ℃是稳定的; 配合物C4F9SO3)2SnBu2能溶解在乙酸乙酯、丙酮、乙腈、四氢呋喃、乙醚等极性有机溶剂中, 但室温下, 在非极性溶剂己烷、二氯甲烷、甲苯中不溶. 以乙腈作溶剂, 室温下, (C4F9SO3)2SnBu2的用量分别为1.0和5.0 mol%, 醛的烯丙基化反应和Mukaiyama-aldol反应有效进行, 高产率得到对应产物.

本文引用格式

刘毅 , 王勰 , 陈锦杨 , 李宁波 , 许新华 . 全氟丁基磺酸锡催化醛烯丙基化和Mukaiyama-aldol反应[J]. 有机化学, 2012 , 32(12) : 2328 -2333 . DOI: 10.6023/cjoc201209032

Abstract

Bisperfluorobutylsulfonate bisbutyltin complex was successfully synthesized by treating C4F9SO3Ag with Bu2SnCl2 in acetone at room temperature. When the complex was exposed to air two days, 1H NMR spectra showed that its structure had no change. TG-DSC showed that the complex was stable below 220 ℃. The complex had a good solubility in polar solvents, such as ethyl acetate, acetone, acetonitrile, THF, ethyl ether. But it was poor soluble in hexane, CH2Cl2, toluene at room temperature. In the presence of 1.0 and 5.0 mol% of bisperfluorobutylsulfonate bisbutyltin respectively, allylation of aldehyde and Mukaiyama aldol reaction could efficiently occur in CH3CN at room temperature and give high yield of the corresponding products.

参考文献

[1] Mannix, L. K.; Files, J. A. CNS Drugs 2005, 19, 951.

(b) Goadsby, P. J. Nat. Rev. Drug Discovery 2005, 4, 741.

(c) Buchanan, T. M.; Ramadan, N. M.; Aurora, S. Exp. Rev. Neurother. 2004, 4, 391.

[2] (a) Trofimov, B. A.; Nedolya, N. A. In Comprehensive Heterocyclic Chemistry III, Vol. 3, Eds.: Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K.; Jones, G.; Elsevier, Oxford, 2008, pp. 110~133.

(b) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.

(c) Rosa, M. D.; Soriente, A. Eur. J. Org. Chem. 2010, 1029.

(d) Desroses, M.; Wieckowski, K.; Stevens, M.; Odell, L. R. Tetrahedron Lett. 2011, 52, 4417.

(e) Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org. Lett. 2006, 8, 4093.

[3] (a) Trsushimoto, T.; Kanbara, M. Org. Lett. 2011, 13, 912.

(b) Rizzo, J. R.; Alt, C. A.; Zhang, T. Y. Tetrahedron Lett. 2008, 49, 6749.

(c) Imm, S.; Bähn, S.; Tillack, A.; Mevius, K.; Nenbert, L.; Beller, M. Chem. Eur. J. 2010, 16, 2705.

[4] (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.

(b) Ojima, I. Catalytic Asymmetric Synthesis, Wiley-VCH, New York, 2000.

(c) Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organimetallic Compounds, 2nd ed., Wiley-VCH, Weinheim, 2002.

(d) Woodmansee, D. H.; Pfaltz, A. In Topics in Organometallic Chemistry, Springer-Verlag BerlinHeidelberg, 2011, pp. 31~76.

[5] (a) Cui, X.; Burgess, K. Chem. Rev. 2005, 105, 3272.

(b) Roseblade, S. J.; Pfaltz, A. Acc. Chem. Res. 2007, 40, 1402.

(c) Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D. R.; Reibenspies, J. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113.

(d) Cui, X.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 14212.

(e) Zhao, J.; Burgess, K. J. Am. Chem. Soc. 2009, 131, 13236.

(f) Mazuela, J.; Norrby, P.-O.; Andersson, P. G.; Pàmies, O.; Diéguez, M. J. Am. Chem. Soc. 2011, 133, 13634.

[6] (a) Pelmutter, P. Conjugate Addition Reactions in Organic Synthesis, Pergamon, Oxford, 1992.

(b) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Vol. III, Springer, New York, 1999, pp. 1105~1143.

(c) Berner, M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.

(d) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Chem. Rev. 2005, 105, 933.

(e) Sulzer-Mossé, S.; Alexakis, A. Chem. Commun. 2007, 3123.

(f) Jautze, S.; Peters, R. Synthesis 2010, 365.

[7] Selected recent reviews about asymmetric conjugate additions:

(a) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M. Synthesis 2007, 1279.

(b) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796.

(c) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.

(d) Jautze, S.; Peters, R. Synthesis 2010, 365.

[8] (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.

(b) Krause, N.; Hoffmann-Röder, A. Synthesis 2001, 171.

(c) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221.

(d) Li, K.; Alexakis, A. Tetrahedron Lett. 2005, 46, 8019.

(e) Li, K.; Alexakis, A. Tetrahedron Lett. 2005, 46, 5823.

(f) Isleyen, A.; Dogan, ö. Tetrahedron: Asymmetry 2007, 18, 679.

(g) Escorihuela, J.; Burguete, M. I.; Luis, S. V. Tetrahedron Lett. 2008, 49, 6885.

(h) Dong, Z.-B.; Liu, B.; Fang, C.; Li, J.-S. J. Organomet. Chem. 2008, 693, 17.

(i) Kawamura, K.; Fukukawa, H.; Hayashi, M. Org. Lett. 2008, 10, 3509.

(j) Xie, Y.; Huang, H.; Mo, W.; Fan, X.; Shen, Z.; Shen, Z.; Sun, N.; Hu, B.; Hu, X. Tetrahedron: Asymmetry 2009, 20, 1425.

(k) Endo, K.; Ogawa, M.; Shibata, T. Angew. Chem., Int. Ed. 2010, 49, 2410.

(l) Tauchman, J.; Císa?ová, I.; Štěpni?ka, P. Eur. J. Org. Chem. 2010, 4276.

(m) Zhao, Q.-L.; Tse, M. K.; Wang, L. L.; Xing, A.-P.; Jiang, X. Tetrahedron: Asymmetry 2010, 21, 2788.

(n) Rachwalski, M.; Le?niak, S.; Kie?basiński, P. Tetrahedron Asymmetry 2010, 21, 1890.

(o) MikláŠová, N. N.; Julínek, O.; MeŠková, M.; Setni?ka, V.; Urbanová, M. Tetrahderon Lett. 2010, 51, 1966.

(p) Ni, C.-Y.; Kan, S.-S.; Liu, Q.-Z.; Kang, T.-R. Org. Biomol. Chem. 2011, 9, 6211.

[9] Palmieri, A.; Petrini, M.; Shaikh, R. R. Org. Biomol. Chem. 2010, 8, 1259.

[10] Jing, L.; Wei, J.; Zhou. L.; Huang, Z.; Li, Z.; Wu, D.; Xiang, H.; Zhou, X. Chem. Eur. J. 2010, 16,10955.

[11] Shaikh, R. R.; Mazzanti, A.; Petrini, M.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47, 8707.

[12] Zheng, B.-H.; Ding, C.-H.; Hou, X.-L; Dai, L.-X. Org. Lett. 2010, 12, 1688.

[13] (a) Dobish, M. C.; Johnston, J. N. Org. Lett. 2010, 12, 5744.

(b) Ballini, R.; Palmieri, A.; Petrini, M.; Shaikh, R. R. Adv. Synth. Catal. 2008, 350, 129.

[14] Palmieri, A.; Petrini, M. J. Org. Chem. 2007, 72, 1863.

[15] Marcili, L.; Palmieri, A.; Petrini, M. Org. Biomol. Chem. 2010, 8, 706.

[16] Jagt, R. B. C.; Toullec, P. Y.; Schudde, E. P.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. J. Comb. Chem. 2007, 9, 407.

文章导航

/