综述与进展

芳香偶氮衍生物合成策略研究的新进展

  • 钦传光 ,
  • 李洋 ,
  • 李海亮 ,
  • 李大为 ,
  • 牛卫宁 ,
  • 尚晓娅 ,
  • 徐春兰
展开
  • a 西北工业大学理学院应用化学系 教育部空间应用物理与化学重点实验室陕西省高分子科学与技术重点实验室 西安 710129;
    b 西北工业大学生命学院 西安 710072

收稿日期: 2012-09-28

  修回日期: 2012-11-15

  网络出版日期: 2012-11-20

基金资助

国家自然科学基金(Nos. 31001012, 31101304, 20802057, 20672086)、陕西省自然科学基础研究计划重点(No. 2012JZ2002)和西北工业大学研究生创业种子基金(No. Z2012198)资助项目.

Novel Progresses in Synthesis Strategies of Aromatic Azo Derivatives

  • Qin Chuanguang ,
  • Li Yang ,
  • Li Hailiang ,
  • Li Dawei ,
  • Niu Weining ,
  • Shang Xiaoya ,
  • Xu Chunlan
Expand
  • a Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education and Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, Department of Applied Chemistry, School of Natural & Applied Sciences, Northwestern Polytechnical University, Xi'an 710129;
    b School of Life Science, Northwestern Polytechnical University, Xi'an 710072

Received date: 2012-09-28

  Revised date: 2012-11-15

  Online published: 2012-11-20

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 31001012, 31101304, 20802057, 20672086), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2012JZ2002) and the Postgraduate Pioneer Seed Funding of Northwestern Polytechnical University (No. Z2012198).

摘要

芳香偶氮化合物具有独特的光致顺反异构特性, 不仅应广泛用于传统化学工业, 还将应用于光化学分子开关、主客体超分子化学识别、自组装液晶材料、生物医学成像与化学分析以及光驱分子马达等诸多新兴科学领域. 特别具挑战性的是开发具有高化学稳定性和热稳定性又易检测的偶氮发色团, 近年来受到科研工作者们的高度关注. 随着人们对研究新型芳香偶氮衍生物的迫切需要, 又相继创新和发展了一些更新、更有效的芳香偶氮化合物合成方法, 综述了最近新型芳香偶氮衍生物合成方法的新进展, 尤其强调了芳基肼的氧化脱氢反应和金属催化偶联反应、芳胺的氧化反应、硝基芳香化合物的还原偶联反应、芳香偶氮氧化物的转化与还原、叠氮芳香化合物的催化偶联与热分解反应以及芳香基重氮盐的偶合与催化偶联反应等在芳香偶氮化合物合成方面应用的新趋势.

本文引用格式

钦传光 , 李洋 , 李海亮 , 李大为 , 牛卫宁 , 尚晓娅 , 徐春兰 . 芳香偶氮衍生物合成策略研究的新进展[J]. 有机化学, 2013 , 33(03) : 444 -457 . DOI: 10.6023/cjoc201209042

Abstract

Aromatic azo derivatives possess a particular character that is the light driven reversible isomerization between their cis- and trans-forms, which makes them excellent candidates to modulate the relative movement of different moieties. They are widely used not only in the traditional chemical industry, but also in many newly rising areas of science, such as photochemical molecular switch, super-molecular chemistry of host-guest recognition, self-assembly liquid crystal material, analysis of biomedical imaging and chemical, light driven molecular motor, and so on. The development of chromophores with characteristics, like high chemical stability, thermal stability over a wide temperature range and having two forms easily detectable by a method that does not cause irreversible molecular alterations, is a major challenge for researchers who focus their interest in this area. With the increasing need for investigating unknown aromatic azo derivatives, many novel efficient synthesis strategies are recently innovated and developed in succession. This critical review covers the various synthetic methods of aromatic azo derivatives reported more recently, with special emphasis on application of arylhydrazine, arylamine, nitroarene, azoxyarene, arylazide, and their derivatives.

参考文献

[1] Cannizzo, C.; Amigoni-gerbier, S.; Frigoli, M.; Larpent C. J. Polym. Sci.: Part A: Polym. Chem. 2008, 6, 3375.

[2] Brenzovich, Jr., E. W.; Houk, J. T. R.; Malubay, M. A. S.; Miranda, O. J.; Ross, M. K.; Abelt, J. C. Dyes Pigm. 2002, 52, 101.

[3] Athey Jr., R. D. Eur. Coat. J. 1998, 3, 146.

[4] Sandborn, W. J. Am. J. Gastroenterol. 2002, 97, 2939.

[5] (a) Jain, A.; Gupta, Y.; Jain, S. K. Crit. Rev. Ther. Drug Carrier Syst. 2006, 23, 349.
(b) Mei, X.; Yang, S.; Chen, D. Y.; Li, N. J.; Li, H.; Xu, Q. F.; Ge, J. F.; Lu, J. M. Chem. Commun. 2012, 48, 9846.

[6] Cisnetti, F.; Ballardini, R.; Credi, A.; Gandolfi, M. T.; Masiero, S.; Negri, F.; Pieraccini, S.; Spada G. P. Chem.-Eur. J. 2004, 10, 2011.

[7] (a) Li, W. W.; Xu, D. M.; Zhang, Z. L.; Xu, Y. Chin. J. Chem. 2012, 30, 1819.
(b) Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4139.

[8] Lee, K. M.; Wang, H. D.; Koerner, H.; Vaia, A. R.; Tan, L.-S.; White J. T. Angew. Chem., Int. Ed. 2012, 51, 4117.

[9] Deloncle, R.; Caminade, A.-M. J. Photochem. Photobiol. C: Photochem. Rev. 2010, 11, 25.

[10] (a) Bandara, D.; Burdette, C. S. Affiliation Information . University of Connecticut, 55 North Eagleville Road, Storrs, USA Chem. Soc. Rev. 2012, 41, 1809.
(b) Ikeda, T.; Tsutsumi, O. Science 1995, 268, 1873.

[11] Tamaoki, N. Adv. Mater. 2001, 13, 1135.

[12] Feringa, B. L.; Van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789.

[13] (a) Wegner, A. H. Angew. Chem., Int. Ed. 2012, 51, 4787.
(b) Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422.
(c) Hoppmann, C.; Seedorff, S.; Richter, A.; Fabian, H.; Schmieder, P. Angew. Chem., Int. Ed. 2009, 48, 6636.
(d) Gorostiza1, P.; Isacoff, Y. E. Science 2008, 322, 395.

[14] Beharry, A. A.; Wong, L.; Tropepe, V.; Woolley, G. A. Angew. Chem., Int. Ed. 2011, 50, 1325.

[15] Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kutinake, M.; Nakashima, N. J. Am. Chem. Soc. 1997, 119, 7605.

[16] Banerjee, I. A.; Yu, L.; Matsui, H. J. Am. Chem. Soc. 2003, 125, 6542.

[17] Crano, J. C.; Guglielmetti, R. Organic Photochromic and Thermochromic Compounds, Plenum Press, New York, 1999.

[18] (a) Bandara, H. M. D.; Burdette, C. S. Chem. Soc. Rev. 2012, 41, 1809.
(b) Muraoka, T.; Kinbara, K.; Aida, T. Nature 2006, 440, 512.

[19] Liang, X.; Asanuma, H.; Komiyama, M. J. Am. Chem. Soc. 2002, 124, 1877.

[20] Zhen, W.; Han, H.; Anguiano, M.; Lemere, C.; Cho, C.-G.; Lansbury, P. T. J. Med. Chem. 1999, 42, 2805.

[21] Barth, M.; Tasadaque, S.; Shah, A.; Rademann, J. Tetrahedron 2004, 60, 8703.

[22] Samanta, S.; Qin, C. G.; Lough, J. A.; Woolley, G. A. Angew. Chem., Int. Ed. 2012, 51, 6452.

[23] Hyatt, J. A. Tetrahedron Lett. 1977, 18, 141.

[24] Drug, E.; Gozin, M. J. Am. Chem. Soc. 2007, 129, 13784.

[25] Niu, Y.-S.; Li, J.-P; Zheng, P.-Z. Chem. Reag. 2006, 28, 109 (in Chinese).
(牛永生, 李建平, 郑鹏志, 化学试剂, 2006, 28, 109.)

[26] Lim, Y.-K.; Lee, K.-S.; Cho, C.-G. Org. Lett. 2003, 5, 979.

[27] Kang, H. M.; Kim, H. Y.; Jung, J. W.; Cho, C. G. J. Org. Chem. 2007, 72, 679.

[28] Dohno, C.; Yamamoto, T.; Nakatani, K. Eur. J. Org. Chem. 2009, 4051.

[29] Kim, K. Y.; Shin, J. T.; Lee, K. S.; Cho, C. G. Tetrahedron Lett. 2004, 45, 117.

[30] Smith, L. I.; Irvine, W. B. J. Am. Chem. Soc. 1941, 63, 1036.

[31] Hecker, E.; Lattrell, R. Justus Liebigs Ann. Chem. 1963, 662, 48.

[32] Taylor, E. C.; Jagdmann, Jr. G. E.; McKillop, A. J. Org. Chem. 1978, 43, 4385.

[33] Naemura, K.; Wanebe, T.; Hirose, K.; Tobe, Y. Tetrahedron: Asymmetry 1997, 8, 873.

[34] Carreno, C. M.; Fernandez-Mudarra, G.; Merino, E.; Ribagorda, M. J. Org. Chem. 2004, 69, 3413.

[35] Carreno, C. M.; Garcia, I.; Ribagorda, M.; Merino, E.; Pieraccini, S.; Spada, G. P. Org. Lett. 2005, 7, 2869;

[36] Carreno, C. M.; Garcia, I.; Nunez, I.; Merino, E.; Ribagorda, M.; Pieraccini, S.; Spada, G. P. J. Am. Chem. Soc. 2007, 129, 7089.

[37] Schmittel, M.; Burghart, A. Angew. Chem., Int. Ed. 1997, 36, 2550.

[38] Patel, S.; Mishra, B. K. Tetrahedron Lett. 2004, 45, 1371.

[39] Noureldin, N. A.; Bellegarde, J. W. Synthesis 1999, 939.

[40] Karunakaran, C.; Palanisamy, P. N. J. Mol. Catal. A: Chem. 2001, 172, 9.

[41] Orito, K.; Hatakeyama, T.; Takeo, M.; Uchiito, S.; Tokuda, M.; Suginome, H. Tetrahedron 1998, 54, 8403.

[42] Farhadi, S.; Zaringhadam, P.; Sahamieh, R. Z. Acta Chim. Slov. 2007, 54, 647.

[43] (a) Chi, L.; Sadovski, O.; Woolley, G. A. Bioconjugate Chem. 2006, 17, 670.
(b) Gilbert, M. A.; Failli, A.; Shumsky, J.; Yang, Y. J.; Severin, A.; Singh, G.; Hu, W. J. Med. Chem. 2006, 49, 6027.
(c) Norikane, Y.; Tamaoki, N. Org. Lett. 2004, 6(15), 2595.

[44] Gomy, C.; Schmitzer, R. A. Org. Lett. 2007, 9(20), 3865.

[45] Sadovski, O.; Beharry, A. A. Zhang, F. Z.; Woolley, G. A. Angew. Chem., Int. Ed. 2009, 48, 1484.

[46] (a)Grirrane, A.; Corma, A.; Garcia, H. Science 2008, 322, 1661.
(b) Esdaile, J. L.; Jensen, P.; McMurtrie, C. J.; Arnold, P. D. Angew. Chem., Int. Ed. 2007, 46, 2090.
(c) Leyva, E.; Medina, C.; Moctezuma, E.; Leyva, S. Can. J. Chem. 2004, 82, 1712.

[47] Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49, 6174.

[48] Shaieb, E. K.; Narayanan, V.; Hopf, H. Eur. J. Org. Chem. 2003, 567.

[49] Burns, C. D.; Zhang, F. Z; Woolley, G. A. Nat. Protoc. 2007, 2, 251.

[50] Zhang, F. Z.; Sadovski, O.; Woolley, G. A. ChemBioChem 2008, 9, 2147.

[51] Beharry, A. A.; Sadovski, O.; Woolley, G. A. Org. Biomol. Chem. 2008, 6, 4323.

[52] Samanta, S.; Woolley G. A. ChemBioChem 2011, 12, 1712.

[53] Takeda, Y.; Okumura, S.; Minakata, S. Angew. Chem., Int. Ed. 2012, 51, 7804.

[54](a) Renner, C.; Kusebauch, U.; Loweneck, M.; Milbradt, A. G.; Moroder, L. J. Pep. Res. 2005, 65, 4.
(b) Li, Y. C.; Li, S. H.; Qi, C.; Zhang, H. J.; Zhu, M. Y.; Pang, S. P. Acta Chim. Sinica 2011, 69, 2159 (in Chinese).
(李玉川, 李生华, 祁才, 张慧娟, 朱梦宇, 庞思平, 化学学报, 2011, 69, 2159.)

[55] (a) Gowenlock, B. G.; Richter-Addo, G. B. Chem. Rev. 2004, 104, 3315.
(b) Defoin, A. Synthesis 2004, 706.

[56] Yu, B. C.; Shirai, Y.; Tour, J. M. Tetrahedron 2006, 62, 10303.

[57] Tie, C.; Gallucci, J. C.; Parquette, J. R. J. Am. Chem. Soc. 2006, 128, 1162.

[58] Berryman, B. O.; Sather, C. A.; Rebek Jr., J. Chem. Commun. 2011, 47(2), 656.

[59] Kubitschke, J.; Näther, C.; Herges, R. Eur. J. Org. Chem. 2010, 5041.

[60](a) Norikane, Y.; Kitamoto, K.; Tamaoki, N. Org. Lett. 2002, 4(22), 3907.
(b) Wei, W. H.; Tomohiro, T.; Kodaka, M.; Okuno, H. J. Org. Chem. 2000, 65, 8979.

[61] Khan, A.; Hecht, S. Chem.-Eur. J. 2006, 12, 4764.

[62] Wada, S.; Urano, M.; Suzuki, H. J. Org. Chem. 2002, 67, 8254.

[63] Laskar, D. D.; Prajapati, D.; Shandu, J. S. J. Chem. Soc., Perkin Trans. 1 2000, 67.

[64] Gowda, S.; Gowda, D. C. Synthesis 2002, 460.

[65] Srinivasa, G. R.; Abiraj, K.; Gowda, D. C. Aust. J. Chem. 2004, 57, 609.

[66] Pasha, M. A.; Jayashankara, V. P. Ultrason. Sonochem. 2005, 12, 433.

[67] Stolarczyk, K.; Bilewick, R.; Skwierawska, A.; Biernat, J. F. J. Inclusion Phenom. Macrocyclic Chem. 2004, 49, 173.

[68](a)Peng, Y.; Zhao, Z.-G.; Yang, Z.-X.; Mu, Q.-M.; Chen, S.-H. Chin. J. Org. Chem. 2005, 25, 462 (in Chinese).
(彭游, 赵志刚, 杨祖幸, 牟其明, 陈淑华, 有机化学, 2005, 25, 462.)
(b) Altomare, A.; Ciardelli, F.; Marchini, M.; Solaro, R. Polymer 2005, 46, 2086.
(c) Xiong, C.-X.; Niu, Y.-S.; Zhou, W.; Dong, L.-J. J. Chem. Res. 2006, (2), 139.

[69] Srinivasa, G. R.; Abiraj, K.; Gowda, D. C. Tetrahedron Lett. 2003, 44, 5835.

[70] Srinivasa, G. R.; Abiraj, K.; Gowda, D. C. Synth. Commun. 2003, 33, 4221.

[71] Huang, Q. M.; Pan, W.; Li, Q.; Wang, S. W.; Li, Z. Y.; Pan, Z. Q. Chin. J. Org. Chem. 2011, 31, 336 (in Chinese).
(黄齐茂, 潘威, 李清, 王司卫, 李志远, 潘志权, 有机化学, 2011, 31, 336.)

[72] Won, S.; Kim, W.; Kim, H. Bull. Korean Chem. Soc. 2006, 27, 195.

[73] Sakai, N.; Fujii, K.; Nabeshima, S.; Ikeda, R.; Konakahara, T. Chem. Commun. 2010, 46, 3173.

[74] Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Angew. Chem., Int. Ed. 2010, 49, 9657.

[75] Shimao, I.; Oae, S. Bull. Chem. Soc. Jpn. 1983, 56, 643.

[76] Yamamoto, J.; Nishigaki, Y.; Umezu, M. Tetrahedron 1980, 36, 3177.

[77] Vozza, J. F. J. Org. Chem. 1969, 34, 3219.

[78] Olsen, H.; Snyder, J. P. J. Am. Chem. Soc. 1977, 99, 1524.

[79] Nanjundaswamy H. M.; Pasha, M. A. Synth. Commun. 2005, 35, 2163.

[80] Nanjundaswamy, H. M.; Pasha, M. A. Indian J. Chem. 2006, 45B, 1086.

[81] Konwar, D.; Boruah, R. C.; Sandhu, J. S. Synthesis 1990, 337.

[82] Ilias, M.; Barman, D. C.; Prajapati, D.; Sandhu, J. S. Tetrahedron Lett. 2002, 43, 1877.

[83] Saini, A.; Kumar, S.; Sandhu, J. S. Synlett 2006, 395.

[84] Baik, W.; Kim, D. I.; Koo, S.; Rhee, J. U.; Shin, S. H.; Kim, B. H.Tetrahedron Lett. 1997, 38, 845.

[85] Sanz, R.; Escribano, J.; Fernandez, Y.; Aguado, R.; Pedrosa, M. R.; Arnáiz, F. J. Synlett 2005, 1389.

[86] Olah, G. A.; Balaram Gupta, B. G.; Narang, S. C. J. Org. Chem. 1978, 43, 4503.

[87] Mukaiyama, T.; Nambu, H.; Okamoto, M. J. Org. Chem. 1962, 27, 3651.

[88] Scriven, E. F. V.; Suschitzky, H. Tetrahedron Lett. 1973, 14, 103.

[89] Mankad, P. N.; Muller, P.; Peters, C. J. J. Am. Chem. Soc. 2010, 132, 4083.

[90] Takaoka, A.; Moret, M.-E.; Peters, C. J. J. Am. Chem. Soc. 2012, 134, 6695.

[91] Haghbeen, K.; Tan, E. W. J. Org. Chem. 1998, 63, 4503.

[92] Wang, S.-R.; Li, X.-G; He, L.-L.; Hu, Y.-Q. J. Tianjin Univ. 2007, 40, 1295 (in Chinese).
(王世荣, 李祥高, 何莉莉, 胡雅琴, 天津大学学报, 2007, 40, 1295.)

[93] Xu, L. J.; Lin, W. H.; Sun, W. L.; Shen, Z. Q. Acta Polym. Sin. 2008, 1, 62 (in Chinese).
(徐磊杰, 林维红, 孙维林, 沈之荃, 高分子学报, 2008, 1, 62.)

[94] Han, M.; Ishikawa, D.; Muto, E.; Hara, M. J. Lumines 2009, 129, 1163.

[95] Feng, F.; Hu, W. B.; Liu, H. X.; Nie, X. L.; Yu, A. N. Chin. J. Appl. Chem. 2010, 27, 169 (in Chinese).
(冯驸, 胡卫兵, 刘红霞, 聂响亮, 余爱农, 应用化学, 2010, 27, 169.)

[96] Liu, G.; Zhang, B.; Chen, Y.; Zhu, C.-X.; Zeng, L. J.; Chan, D. S.-H.; Neoh, K.-G.; Kang, E.-T. J. Mater. Chem. 2011, 21, 6027.

[97] Merrington, J.; James, M.; Bradley, M. Chem. Commun. 2002, 38, 140.

[98] Kim, J. Y.; Kim, G.; Kim, C. R.; Lee, S. H.; Lee, J. H.; Kim, J. S. J. Org. Chem. 2003, 68, 1933.

[99] Barbero, M.; Degani, I.; Dughera, S.; Fochi, R.; Perracino, P. Synthesis 1998, 1235.
[100] Merino, E. Chem. Soc. Rev. 2011, 40, 3835.
文章导航

/