研究论文

新型二阶非线性光学生色团的合成及辅助给体对分子性能的影响研究

  • 游英才 ,
  • 唐先忠 ,
  • 唐翔 ,
  • 贾鲲鹏 ,
  • 王洋 ,
  • 李昱树 ,
  • 张煜
展开
  • a 电子科技大学电子薄膜与集成器件国家重点实验室 成都 610054;
    b 中国人民解放军63916部队 北京 100000

收稿日期: 2012-09-13

  修回日期: 2012-12-12

  网络出版日期: 2012-12-18

基金资助

国家自然科学基金(No. 60771044)资助项目

Synthesis of Novel Organic Nonlinear Optical Chromophores and the Enhancement of Electro-optic Activity of the Additional Donors

  • You Yingcai ,
  • Tang Xianzhong ,
  • Tang Xiang ,
  • Jia Kunpeng ,
  • Wang Yang ,
  • Li Yushu ,
  • Zhang Yu
Expand
  • a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054;
    b People’s Liberation Army 63916 Troops, Beijing 100000

Received date: 2012-09-13

  Revised date: 2012-12-12

  Online published: 2012-12-18

Supported by

Project supported by the National Natural Science Foundation of China (No. 60771044).

摘要

为了研究辅助给体对生色团分子热分解温度以及二阶极化率的影响, 以已报道生色团分子2-二氰亚甲基-3-氰基-4-(4-二乙胺基-苯乙烯基)-5,5-二甲基-2,5-二氢呋喃(DCDHF-2-V)为基础, 分别在苯环二乙胺基的邻位上以羟基、丁氧基和苄氧基作为辅助给体合成了三种新型的生色团分子: EFC-OH, EFC-OBu和EFC-OBe. 通过核磁共振、红外光谱以及元素分析表征确认了其结构. 热失重分析结果表明, 三种分子的热性能良好, 其中EFC-OBe的热分解温度(Td)最高为278.6 ℃. 溶致变色法测定结果表明, EFC-OBe的二阶非线性光学系数(μgβ1064 nm)最高, 为47149×10-48 esu. 将这三种分子的Td值和μgβ值与未加入辅助给体的DCDHF-2-V分子进行对比, 结果表明辅助给体的加入对分子的热稳定性能影响不大, 但能显著提高分子的μgβ值一个数量级以上.

本文引用格式

游英才 , 唐先忠 , 唐翔 , 贾鲲鹏 , 王洋 , 李昱树 , 张煜 . 新型二阶非线性光学生色团的合成及辅助给体对分子性能的影响研究[J]. 有机化学, 2013 , 33(03) : 530 -534 . DOI: 10.6023/cjoc201209020

Abstract

In order to study the impact of different additional donors on molecular thermal decomposition temperature (Td) value of the chromophores as well as the second polarization (μgβ) value. Three novel materials EFC-OH, EFC-OBu and EFC- OBe were synthesized by attaching additional donors to the benzene ring based on the reported 2-[{4-(4-diethylamino)sty- reneyl}-3-cyano-5,5-dimethyl-5H-furan-2-ylidene]malononitrile (DCDHF-2-V). The three chromophores were characterized by 1H NMR, 13C NHR, FT-IR and elemental analysis. The Td value was determined by TGA testing, and the result showed that three molecules had a good thermal performance. EFC-OBe processing a Td of 278.6 ℃ showed the best among these molecules. The hyperpolarizability was measured and calculated by solvatochromism method. EFC-OBe still showed the best μgβ value of 4.7149×10-44 esu. Comparing to the DCDHF-2-V without additional donors on Td value and μgβ value, additional donors had little effect on Td value while achieved an improvement of one order of magnitude in μgβ values, which indicates that the molecules can work in high temperature and performance better in optics.

参考文献

[1] Feng, J.-K. Acta Chim. Sinica 2005, 63, 1245 (in Chinese).
(封继康, 化学学报, 2005, 63, 1245.)

[2] Qi, X.-Y.; Hu, Q.-Y.; Wang, S.-M.; Yang, F.; Yu, P. Acta Chim. Sinica 2012, 70, 363 (in Chinese).
(祁小云, 胡泉源, 王世敏, 杨飞, 喻平, 化学学报, 2012, 70, 363.)

[3] Liu, Y.-T.; Wang, X.; Liu, X.-Y.; Ji, Y.-Q. Acta Chim. Sinica 2012, 70, 1131 (in Chinese).
(刘英涛, 王鑫, 刘翔宇, 冀永强, 化学学报, 2012, 70, 1131.)

[4] Tang, X. M.S. Thesis, University of Electronic Science and Technology of China, Chengdu, 2010 (in Chinese).
(唐翔, 硕士论文, 电子科技大学, 成都, 2010.)

[5] Li, Q.-Q.; Qin, J.-G.; Li, Z. Chin. J. Org. Chem. 2011, 31, 1337 (in Chinese).
(李倩倩, 秦金贵, 李振 有机化学, 2011, 31, 1337.)

[6] Tang, X.; Tang, X.-Z.; You, Y.-C.; Ren, L.-K.; Wang, Y.; Yan, L.-J. Acta Chim. Sinica 2012, 70, 1565 (in Chinese).
(唐翔, 唐先忠, 游英才, 任立轲, 王洋, 严立京, 化学学报, 2012, 70, 1565.)

[7] Robinson, B. H.; Dalton, L. R.; Harper, A. W.; Ren, A.; Wang, F.; Zhang, C.; Todorova, G.; Lee, M.; Aniszfeld, R.; Garner, S.; Chen, A.; Steier, W. H.; Houbrecht, S.; Persoons, A.; Ledoux, I.; Zyss, J.; Jen, A. K. Y. Chem. Phys. 1999, 245, 35.

[8] Andreu, R.; Cerdán, M. A.; Franco, S.; Garín, J.; Marco, A. B.; Orduna, J.; Palomas, D.; Villacampa, B.; Alicante, R.; Allain, M. Org. Lett. 2008, 10, 4963.

[9] Guieu, V.; Payrastre, C.; Madaule, Y.; Garcia-Alonso, S.; Lacroix, P. G.; Nakatani, K. Chem. Mater. 2006, 18, 3674.

[10] Marder, S. R. Chem. Commun. 2006, 131.

[11] Luo, S.-S.; Qiu, Y.-Q.; Liu, X.-D.; Liu, C.-G.; Shu, M.-Z. Acta Phys.-Chim. Sinica 2009, 9, 1867 (in Chinese).
(罗姗姗, 仇永清, 刘晓东, 刘春光, 苏忠民, 物理化学学报 2009, 9, 1867.)

[12] Liu, J.-S.; Hou, W.-J.; Feng, S.-W.; Qiu, L; Liu, X.-H.; Zhen, Z. J. Phys. Org. Chem. 2011, 24, 439.

[13] Wang, L.; Liu, J.-L.; Bo, S.-H.; Zhen, Z.; Liu, X.-H. Mater. Lett. 2012, 80, 84.

[14] Li, Q.-Q.; Lu, C.-G.; Fu, E.-Q. J. Phys. Chem. B 2008, 112, 4545.

[15] Piao, X.-Q.; Zhang, X.-M.; Inoue, S.; Yokoyama, S.; Aoki, I.; Miki, H.; Otomo, A.; Tazawa, H. Org. Electron. 2011, 12, 1093.

[16] Piao, X.-Q.; Zhang, X.-M.; Mori, Y.; Koishi, M.; Nakaya, A.; Inoue, S.; Aoki, I.; Otomo, A.; Yokoyama, S. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 47.

[17] Wu, J.-Y.; Liu, J.-L.; Zhou, T.-T.; Bo, S.-H.; Qiu, L.; Zhen, Z.; Liu, X.-H. RSC Adv. 2012, 2, 1416.

[18] Han, L.-K.; Jiang, Y.-D.; Li, W. Mater. Lett. 2008, 62, 1495.

[19] He, M.-Q.; Thomas M. L.; John A. S. Chem. Mater. 2002, 14, 4669.

[20] He, M.-Q.; Thomas M. L.; John A. S. Chem. Mater. 2002, 14, 4662.

[21] Baroja, N. M.; Garin, J.; Orduna, J.; Andreu, R. J. Org. Chem. 2012, 77, 4634.

[22] Tang, X.; Tang, X.-Z.; You, Y.-C. Acta Chim. Sinica 2012, 70, 1565.

[23] Wang, Y.; Tang, X.-Z.; Tang, X. Chem. J. Chin. Univ. 2011, 32, 2327 (in Chinese).
(王洋, 唐先忠, 唐翔, 高等学校化学学报, 2011, 32, 2327.)

[24] Zhan, C.-L.; Wang. D.-Y. Acta Chim. Sinica 2001, 59, 213 (in Chinese).
(詹传郎, 王夺元, 化学学报, 2001, 59, 213.)

[25] Pang, M.-L.; Zhang, P.; Dong, Y.-W.; Wang, Y.-M.; Wang, J.-T.; Meng, J.-B. Acta Chim. Sinica 2011, 69, 11 (in Chinese).
(庞美丽, 张鹏, 董轶望, 王永梅, 王积涛, 孟继本, 化学学报, 2011, 69, 11.)

[26] Sun, Z.-F.; You, X.-Z.; Li, D.-G. Acta Chim. Sinica 1994, 52, 734 (in Chinese).
(孙振范, 游效曾, 李大光, 化学学报, 1994, 52, 734.)

[27] Murugan, N.-A.; Kongste, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16453.

[28] Paduraru, P. M.; Popoff, R. T.; Nair, R. J. Comb. Chem. 2008, 10, 123.
文章导航

/