综述与进展

过渡金属催化的C—CN键断裂的研究进展

  • 寇学振 ,
  • 范佳骏 ,
  • 童晓峰 ,
  • 沈增明
展开
  • a 华东理工大学教育部结构可控先进功能材料及其制备重点实验室精细化工研究所 上海 200237;
    b 上海交通大学化学化工学院 上海 200240;
    c 上海交通大学药学院 上海 200240

收稿日期: 2012-12-21

  修回日期: 2013-02-01

  网络出版日期: 2013-02-05

基金资助

国家自然科学基金(Nos. 20272001, 20902058)和上海市教委创新重点(No. 13ZZ014)资助项目.

Recent Progress in the Research of Transition-Metal-Catalyzed C—CN Bond Cleavage

  • Kou Xuezhen ,
  • Fan Jiajun ,
  • Tong Xiaofeng ,
  • Shen Zengming
Expand
  • a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237;
    b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240;
    c School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2012-12-21

  Revised date: 2013-02-01

  Online published: 2013-02-05

Supported by

Project supported by the National Natural Sciences Foundation of China (Nos. 20272001, 20902058) and the Shanghai Education Committee (No. 13ZZ014).

摘要

有机氰化物是一种重要的合成中间体, 在药物、农药、染料和活性物质中都有应用. 使用廉价、简单、低毒的氰基化合物在过渡金属的催化下通过C—CN键断裂生成复杂的氰化物是合成有机氰化物的重要手段之一. 综述了不同过渡金属(如Ni, Pd, Rh, Cu, Ru, Fe, Mo, Co等)催化不同种类的氰基化合物C—CN键断裂的最新研究进展, 如含C(sp1)—CN键化合物、C(sp2)—CN键化合物以及C(sp3)—CN键化合物, 并对有关的反应机理及C—CN键断裂机理的进展进行了探讨.

本文引用格式

寇学振 , 范佳骏 , 童晓峰 , 沈增明 . 过渡金属催化的C—CN键断裂的研究进展[J]. 有机化学, 2013 , 33(07) : 1407 -1422 . DOI: 10.6023/cjoc201212033

Abstract

Nitriles are an important class of organic compounds which can be found in pharmaceuticals, agrochemicals, dyes, and bioactive compounds. Transition-metal-catalyzed C—CN bond cleavage using inexpensive, simple and less toxic nitriles is one of the most attractive modern methods for the synthesis of complicated organic cyanides. Research progress of transition-metal-catalyzed (Ni, Pd, Rh, Cu, Ru, Fe, Mo, Co) different types of C—CN bond cleavage is reviewed, which includes some organic cyanides containing C(sp1)—CN bond, C(sp2)—CN bond and C(sp3)—CN bond. The C—CN cleavage mechanisms are also discussed in this review.

参考文献

[1] (a) Fatiadi, A. J. In Preparation and Synthetic Applications of Cyano Compounds, Eds.: Patai, S.; Rappaport, Z., Wiley, New York, 1983. (b) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances: Synthesis, Patents, Applications, 4th ed., Thieme, Stuttgart, Germany, 2001. (c) Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001, 34, 563. (d) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed., Wiley, Hoboken, NJ, 2007.
[2] (a) Rappoport, Z. Chemistry of the Cyano Group, Wiley, London, 1970. (b) Larock, R. C. Comprehensive Organic Transformations, VCH, Weinheim, 1989, p. 819. (c) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049.
[3] For selected examples of transition-metal-catalyzed cyanantion of aryl halides, see: (a) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Chem. Lett. 1973, 471. (b) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890. (c) Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem. 2003, 3513. (d) Zhou, W.; Xu, J.; Zhang, L.; Jiao, N. Org. Lett. 2010, 12, 2888. For selected examples of direct cyanation through C—H bond cleavage, see: (e) So, Y.-H.; Miller, L. L. J. Am. Chem. Soc. 1980, 102, 7119. (f) Dohi, T.; Morimoto, K.; Kiyono, Y.; Tohma, H.; Kita, Y. Org. Lett. 2005, 7, 537. (g) Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 7094. (h) Do, H.-Q.; Daugulis, O. Org. Lett. 2010, 12, 2517. (i) Qin, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 15893. (j) Lu, Z.; Hu, C.; Guo, J.; Li, J.; Cui, Y.; Jia, Y. Org. Lett. 2010, 12, 480.
[4] For recent reviews, see: (a) Yan, G.; Yu, J.; Zhang, L. Chin. J. Org. Chem. 2012, 32, 294. (b) Kim J.; Kim H.; Chang, S. Angew. Chem. Int. Ed. 2012, 51, 2.
[5] Kim, J.; Chang, S. J. Am. Chem. Soc. 2010, 132, 10272.
[6] Ding, S.; Jiao, N. J. Am. Chem. Soc. 2011, 133, 12374.
[7] Ren, X.; Chen, J.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 6725.
[8] Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Org. Lett. 2011, 13, 5004.
[9] Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
[10] Murahashi, S. I.; Naota, T.; Nakajima, N. J. Org. Chem. 1986, 51, 898.
[11] Nozaki, K.; Sato, N.; Takaya, H. J. Org. Chem. 1994, 59, 2679.
[12] Nishihara, Y.; Inoue, Y.; Izawa, S.; Miyasaka, M.; Tanemura, K.; Nakajima, K.; Takagi, K. Tetrahedron 2006, 62, 9872.
[13] Kobayashi, Y.; Kamisaki, H.; Yanada, R.; Takemoto, Y. Org. Lett. 2006, 8, 2711.
[14] Yasui, Y.; Kamisaki, H.; Takemoto, Y. Org. Lett. 2008, 10, 3303.
[15] Miller, J. A. Tetrahedron Lett. 2001, 42, 6991.
[16] Miller, J. A.; Dankwardt, J. W. Tetrahedron Lett. 2003, 44, 1907.
[17] Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 17, 13904.
[18] Nakao, Y.; Oda, S.; Yada, A.; Hiyama, T. Tetrahedron 2006, 62, 7567.
[19] Nakao, Y.; Yada, A.; Satoh, J.; Ebat, S.; Oda, S.; Hiyama, T. Chem. Lett. 2006, 35, 790.
[20] Nakao, Y.; Hirata, Y.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7420.
[21] Hirata, Y.; Inui, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 6624.
[22] Wu, M.-S.; Rayabarapu, D. K.; Cheng, C.-H. J. Am. Chem. Soc. 2003, 125, 12426.
[23] Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428.
[24] Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
[25] (a) Percec, V.; Bae, J.-Y.; Zhao, M.; Hill, D. H. J. Org. Chem. 1995, 60, 176. (b) Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060.
[26] Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070.
[27] Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J. Org. Lett. 2009, 11, 3374.
[28] Nakai, K.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 11066.
[29] Patra, T.; Agasti, S.; Akanksha; Maiti, D. Chem. Commun. 2013, 49, 69.
[30] Tobisu, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2006, 128, 8152.
[31] Nakao, Y.; Yukawa, T.; Hirata, Y.; Oda, S.; Satoh, J.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7116.
[32] Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428.
[33] Hirata, Y.; Yukawa, T.; Kashihara, N.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 10964.
[34] Nakao, Y.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 10024.
[35] Luo, F.-H.; Chu, C.-I.; Cheng, C.-H. Organometallics 1998, 17, 1025.
[36] Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2003, 42, 1661.
[37] Wen, Q.; Jin, J.; Hu, B.; Lu, P.; Wang, Y. RSC Adv. 2012, 2, 6167.
[38] Tobisu, M.; Nakamura, R.; Kita, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 3174.
[39] Park, E. J.; Lee, S.; Chang, S. J. Org. Chem. 2010, 75, 2760.
[40] Jin, J.; Wen, Q.; Lu, P.; Wang, Y. Chem. Commun. 2012, 48, 9933.
[41] Song, R.-J.; Wu, J.-C.; Liu, Y.; Deng, G.-B.; Wu, C.-Y.; Wei, W.-T.; Li, J.-H. Synlett 2012, 2491.
[42] Nakazawa, H.; Kamata, K.; Itazaki, M. Chem. Commun. 2005, p. 4004.
[43] Nakao, Y.; Hirata, Y.; Tanaka, M.; Hiyama, T. Angew. Chem., Int. Ed. 2008, 47, 385.
[44] Abla, M.; Yamamoto, T. J. Org. Chem. 1997, 532, 267.
[45] Garcia, J. J.; Jones, W. D. Organometallics 2000, 19, 5544.
[46] Garcia, J. J.; Brunkan, N. M.; Jones, W. D. J. Am. Chem. Soc. 2002, 124, 9547.
[47] Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627.
[48] García, J. J.; Arévalo, A.; Brunkan, N. M.; Jones, W. D. Organometallics 2004, 23, 3997.
[49] Atešin, T. A.; Li, T.; Lachaize, S.; Brennessel, W. W.; García, J. J.; Jones, W. D. J. Am. Chem. Soc. 2007, 129, 7562.
[50] Atešin, T. A.; Li, T.; Lachaize, S.; García, J. J.; Jones, W. D. Organometallics 2008, 27, 3811.
[51] Taw, F. L.; White, P. S.; Bergman, R. G.; Brookhart, M. J. Am. Chem. Soc. 2002, 124, 4192.
[52] Taw, F. L.; Mellows, H.; Brookhart, M.; Heinekey, D. M. J. Am. Chem. Soc. 2002, 124, 5100.
[53] Taw, F. L.; Mueller, A. H.; Bergman, R. G.; Brookhart, M. J. Am. Chem. Soc. 2003, 125, 9808.
[54] Ochiai, M.; Hashimoto, H.; Tobita, H. Angew. Chem. Int. Ed. 2007, 46, 8192.
[55] Marlin, D. S.; Olmstead, M. M.; Mascharak, P. K. Angew. Chem., Int. Ed. 2001, 113, 4888.
[56] Lu, T.; Zhuang, X.; Li, Y. Chen, S. J. Am. Chem. Soc. 2004, 126, 4760.
[57] Li, X.; Sun, H.; Yu, F.; Flörke, U.; Klein, H.-F. Organometallics 2006, 25, 4695.
[58] Xu, H.; Williard, P. G.; Bernskoetter, W. H. Organometallics 2012, 31, 1588.
[59] Nakazawa, H.; Kawasaki, T.; Miyoshi, K.; Suresh, C. H.; Koga, N. Organometallics 2004, 23, 117.
[60] Churchill, D.; Shin, J. H.; Hascall, T.; Hahn, J. M.; Bridgewater, B. M.; Parkin, G. Organometallics 1999, 18, 2403.
[61] Liu, Q.-X.; Xu, F.-B.; Li, Q.-S.; Song, H.-B.; Zhang, Z.-Z. Organometallics 2004, 23, 610.
文章导航

/