综述与进展

铜催化水相Ullmann类型偶联反应研究进展

  • 李正凯 ,
  • 吴之清 ,
  • 邓杭 ,
  • 周向葛
展开
  • a 四川大学化学学院 成都 610064;
    b 苏州大学材料与化学化工学院 有机合成江苏省重点实验室 苏州 215123

收稿日期: 2013-01-16

  修回日期: 2013-02-05

  网络出版日期: 2013-02-18

基金资助

国家自然科学基金(Nos. 21072132, 21272161)资助项目.

Progress in Copper-Catalyzed Ullmann-Type Coupling Reactions in Water

  • Li Zhengkai ,
  • Wu Zhiqing ,
  • Deng Hang ,
  • Zhou Xiangge
Expand
  • a College of Chemistry, Sichuan University, Chengdu 610064;
    b Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123

Received date: 2013-01-16

  Revised date: 2013-02-05

  Online published: 2013-02-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21072132, 21272161).

摘要

铜催化的Ullmann类型交叉偶联反应是有机合成中重要的合成方法. 与通常有机反应中采用的有机溶剂相比, 利用自然界储量丰富、廉价、绿色环保的水作为有机反应介质更符合当前所倡导的“绿色”化学和低碳可持续发展的要求. 综述了最近几年来水相铜催化的包括C—N, C—O, C—S和C—C等Ullmann类型交叉偶联反应的最新研究进展.

本文引用格式

李正凯 , 吴之清 , 邓杭 , 周向葛 . 铜催化水相Ullmann类型偶联反应研究进展[J]. 有机化学, 2013 , 33(04) : 760 -770 . DOI: 10.6023/cjoc201301037

Abstract

Copper-catalyzed Ullmann-type coupling reactions have become an important powerful synthetic method in modern organic synthesis. Compared with the usually used organic solvent, employing abundant, cheap, environmental-friendly water as reaction media is obviously more fitful for green chemistry and low carbon sustainable development. The recent progress of copper-catalyzed Ullmann-type including C—N, C—O, C—S and C—C coupling reactions by using water as solvent is reviewed.

参考文献

[1] (a) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
(b) Negishi, E. Angew. Chem., Int. Ed. 2011, 50, 6738.

[2] Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.

[3] Correa, A.; Mancheno, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108.

[4] Wu, X.; Neumann, H. Adv. Synth. Catal. 2012, 354, 3141.

[5] Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174.

[6] Jessop, P. G. Green Chem. 2011, 13, 1391.

[7] Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382.

[8] Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691.

[9] Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13.

[10] Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.

[11] Oshovsky, G. V; Ouali, A.; Xia, N.; Zablocka, M.; Boere, R. T.; Duhayon, C.; Taillefer, M.; Majoral, J. P. Organometallics 2008, 27, 5733.

[12] Wang, Y.; Wu, Z.; Wang, L.; Li, Z.; Zhou, X. Chem. Eur. J. 2009, 15, 8971.

[13] Liang, L.; Li, Z.; Zhou, X. Org. Lett. 2009, 11, 3294.

[14] Zhu, X.; Su, L.; Huang, L.; Chen, G.; Wang, J.; Song, H.; Wan, Y. Eur. J. Org. Chem. 2009, 635.

[15] Huang, M.; Lin, X.; Zhu, X.; Peng, W.; Xie, J.; Wan, Y. Eur. J. Org. Chem. 2011, 4523.

[16] Swapna, K.; Murthy, S. N.; Nageswar, Y. V. D. Eur. J. Org. Chem. 2010, 6678.

[17] Li, X.; Yang, D.; Jiang, Y.; Fu, H. Green Chem. 2010, 12, 1097.

[18] Wu, X.; Hu, W. Chin. J. Chem. 2011, 29, 2124.

[19] Yong, F.-F.; Teo, Y.-C.; Tay, S.-H.; Tan, B. Y.-H.; Lim, K.-H. Tetrahedron Lett. 2011, 52, 1161.

[20] Wang, D.; Zhang, F.; Kuang, D.; Yu, J.; Li, J. Green Chem. 2012, 14, 1268.

[21] Zhang, J.; Yin, H.; Han, S. Chin. J. Org. Chem. 2012, 32, 1429 (in Chinese).
(张敬先, 殷惠清, 韩世清, 有机化学, 2012, 32, 1429.)

[22] Engel-Andreasen, J.; Shimpukade, B.; Ulven, T. Green Chem. 2013, 15, 336.

[23] Lu, Z.; Twieg, R. J. Tetrahedron Lett. 2005, 46, 2997.

[24] Zhu, X.; Ma, Y.; Su, L.; Song, H.; Chen, G.; Liang, D.; Wan, Y. Synthesis 2006, 3955.

[25] Röttger, S.; Sjöberg, P. J. R.; Larhed, M. J. Comb. Chem. 2007, 9, 204.

[26] Xu, H.-J.; Zheng, F.-Y.; Liang, Y.-F.; Cai, Z.-Y.; Feng, Y.-S.; Che, D.-Q. Tetrahedron Lett. 2010, 51, 669.

[27] Xie, J.; Zhu, X.; Huang, M.; Meng, F.; Chen, W.; Wan, Y. Eur. J. Org. Chem. 2010, 3219.

[28] Wu, Z.; Zhou, L.; Jiang, Z.; Wu, D.; Li, Z.; Zhou, X. Eur. J. Org. Chem. 2010, 4971.

[29] Jiao, J.; Zhang, X.-R.; Chang, N.-H.; Wang, J.; Wei, J.-F.; Shi, X.-Y.; Chen, Z.-G. J. Org. Chem. 2011, 76, 1180.

[30] Yong, F.-F.; Teo, Y.-C.; Chua, G.-L.; Lim, G. S.; Lin, Y. Tetrahedron Lett. 2011, 52, 1169.

[31] Carril, M.; SanMartin, R.; Dominguez, E.; Tellitu, I. Green Chem. 2007, 9, 219.

[32] Barbero, N.; Carril, M.; SanMartin, R.; Dominguez, E. Tetrahedron 2008, 64, 7283.

[33] Aubin, Y.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L. Chem. Soc. Rev. 2010, 39, 4130.

[34] Wu, Z.; Jiang, Z.; Wu, D.; Xiang, H.; Zhou, X. Eur. J. Org. Chem. 2010, 1854.

[35] Meng, F.; Zhu, X.; Li, Y.; Xie, J.; Wang, B.; Yao, J.; Wan, Y. Eur. J. Org. Chem. 2010, 6149.

[36] Li, Y.; Zhu, X.; Meng, F.; Wan, Y. Tetrahedron 2011, 67, 5450.

[37] Xu, H.-J.; Liang, Y.-F.; Cai, Z.-Y.; Qi, H.-X.; Yang, C.-Y.; Feng, Y.-S. J. Org. Chem. 2011, 76, 2296.

[38] Mukhopadhyay, C.; Tapaswi, P. K.; Butcher, R. J. Org. Biomol. Chem. 2010, 8, 4720.

[39] Peng, J.; Ye, M.; Zong, C.; Hu, F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. J. Org. Chem. 2011, 76, 716.

[40] Malakar, C. C.; Baskakova, A.; Conrad, J.; Beifuss, U. Chem. Eur. J. 2012, 18, 8882.

[41] Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges. 1905, 38 2211.

[42] Carril, M.; SanMartin, R.; Tellitu, I.; Domìnguez, E. Org. Lett. 2006, 8, 1467.

[43] Barbero, N.; Carril, M.; SanMartin, R.; Domınguez, E. Tetrahedron 2007, 63, 10425.

[44] Barbero, N.; SanMartin, R.; Domínguez, E. Green Chem. 2009, 11, 830.

[45] Jing, L.-H.; Wei, J.-T.; Zhou, L.; Huang, Z.-Y.; Li, Z.-K.; Zhou, X.-G. Chem. Commun. 2010, 46, 4767.

[46] Yang, D.-S.; Fu, H. Chem. Eur. J. 2010, 16, 2366.

[47] (a) Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13.
(b) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385.

[48] Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002, 4, 3517.

[49] Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. Chem. Eur. J. 2007, 13, 5100.

[50] Herrero, M. T.; SanMartin, R.; Domínguez, E. Tetrahedron 2009, 65, 1500

[51] Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Eur. J. Org. Chem. 2008, 640.

[52] Xu, H.-J.; Liang, Y.-F.; Zhou, X.-F.; Feng, Y.-S. Org. Biomol. Chem. 2012, 10, 2562.

[53] Deng, H.; Li, Z.-K.; Ke, F.; Zhou, X.-G. Chem. Eur. J. 2012, 18, 4840.

[54] Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Zhou, X. Org. Lett. 2011, 13, 454.

[55] Yang, H.; Li, Y.; Jiang, M.; Wang, J.-M.; Fu, H. Chem. Eur. J. 2011, 17, 5652.

[56] Wang, F.; Chen, C.; Deng, G.; Xi, C.-J. J. Org. Chem. 2012, 77, 4148.

[57] Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.

[58] Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874.

[59] Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58, 4716.

[60] Chen, G.; Zhu, X.; Cai, J.; Wan, Y. Synth. Commun. 2007, 37, 1355.

[61] Guan, J. T.; Yu, G.-A.; Chen, L.; Wang, T. Q.; Yuan, J. J.; Liu, S. H. Appl. Organomet. Chem. 2009, 23, 75.

[62] Yu, L.; Jiang, X.; Wang, L.; Li, Z.; Wu, D.; Zhou, X. Eur. J. Org. Chem. 2010, 5560.

[63] Yang, D.; Li, B.; Yang, H.; Fu, H.; Hu, L. Synlett 2011, 702.

[64] (a) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196.
(b) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X. Chem. Sci. 2010, 1, 326.

[65] Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.
文章导航

/