蒽单元和DMIT单元构建的三组分荧光传感器与汞(II)的反应及其在离子液中的荧光性质
收稿日期: 2013-01-02
修回日期: 2013-02-24
网络出版日期: 2013-03-07
基金资助
安徽高校省级自然科学研究重点项目计划(No.KJ2010A307);淮北市科技人才培育计划基金(No.20120310)资助项目.
A Novel Triad Fluorescent Chemodosimeter with DMIT and Anthracene Units for Hg(II) recognition and its Fluorescence Properties in Ionic Liquid
Received date: 2013-01-02
Revised date: 2013-02-24
Online published: 2013-03-07
Supported by
Project supported by Natural Science Foundation of Anhui Province Institution of Higher Learning (No.KJ2010A307)and Foundation of Huaibei City Science and Technology Talent(No.20120310).
4,5-二(2′-氰乙基硫基) 1, 3-二硫杂环戊烯-2-硫酮在甲醇钠的作用下消除一个氰乙基, 形成1, 3-二硫杂环戊烯-2-硫酮单钠盐, 再与9,10-二(氯甲基)蒽反应生成由两个1, 3-二硫杂环戊烯-2-硫酮(dmit)单元和一个蒽单元构建的新型三组分荧光传感器。这种新的荧光分子传感器与乙酸汞(II)的反应, 却生成具有强荧光的二乙酸蒽-9,10-二甲酯4和双(1,3-杂环二硫戊烯-2-酮-4,5-二硫)Hg (II)的配合物5, 利用化合物4的强荧光性质可以选择性识别Hg(II)。还在离子液中研究此荧光分子传感器特殊的荧光行为, 实验结果表明随着离子液量的增加, 溶液的荧光显著增强。
关键词: 1, 3-二硫杂环戊烯-2-硫酮; 荧光传感器; 合成; 离子液
迟兴宝 , 刘洋 . 蒽单元和DMIT单元构建的三组分荧光传感器与汞(II)的反应及其在离子液中的荧光性质[J]. 有机化学, 0 , (0) : 0 -0 . DOI: 10.6023/cjoc201301002
4,5-bis(2'-cyanoethylthio)-1,3-dithiole-2-thione (dmit) was treated with sodium methoxide to deprotect one 2-cyanoethyl group, affording mono-thiolate of dmit. The generated mono-thiolate was trapped by 9, 10-dicholormethylene anthracene to yield a novel triad fluorescent chemodosimeter with DMIT and anthracene units. The triad reacted with Hg(OAc)2 to yield a strongly fluorescent compound 4 and a complex 5 of dmit. So the triad could selectively recognize Hg2+ by the unique properties of compound 4. Fluorescence properties of the triad were further explored in ionic liquid. The experiment results showed that fluorescence intensity of the triad became more strengthen with amounts of ionic liquid.
[1] (a) De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
(b) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P. Acc. Chem. Res. 1999, 32, 846.
(c) Feringa, B. L. Molecular Switches; Wiley-VCH: Weinheim, Germany, 2001.
(d) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348.
[2] Callan, J. F.; De Silva, A. P.; McClenaghan, N. D. Chem. Commun. 2004, 2048.
[3] Uchiyama, S.; Kawai, N.; de Silva, A. P.; Iwai, K. J. Am. Chem. Soc. 2004, 126, 3032.
[4] (a)Gobbi, L.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1999, 38, 674.
(b) Beyeler, A.; Belser, P.; De Cola, L. Angew. Chem., Int. Ed. Engl. 1997, 36, 2779.
[5] (a) Fabbrizzi, L.; Licchelli, M.; Mascheroni, S.; Poggi, A.; Sacchi, D.; Zema, M. Inorg. Chem. 2002, 41, 6129.
(b) De Santis, G.; Fabbrizzi, L.; Licchelli, M.; Sardone, N.; Velders, A. H. Chem. Eur. J. 1996, 2, 1243.
[6] (a) De Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. J. Am. Chem.Soc. 1997, 119, 7891.
(b) Zhang, G.-X, Zhang,D.-Q., Yin, S.-W., Yang, X.-D., Shuai, Zh.-G., and Zhu, D.-B., Chem. Commun., 2005, 2161.
[7] (a) Albelda, M. T.; Bernardo, M. A.; D?az, P.; Garc?a- Espa?a, E.; Seixas de Melo, J.; Pina, F.; Soriano, C.; Luis, S. V. Chem. Commun. 2001, 1520.
(b) Qu, D.-H.; Wang, Q.-C.; Ren, J.; Tian, H. Org. Lett. 2004, 6, 2085.
[8] (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348.
(b) Jongmin, K.; Miwhoa, C. J.; Young, K.; Eun, Y. L. and Juyoung, Y. J. Org. Chem., 2002, 67, 4384.
(c) Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecular Recognition; American Chemical Society: Washington, DC, 1992.
(d) De Silva S. A.; Amorelli, B.; Isidor, D. C.; Loo, K. C.; Crooker, K. E.; Pena, Y. E. Chem. Commun. 2002, 1360.
(e) Zhou, G.; Cheng, Y.-X.; Wang, L.-X.; Jing, X.-B. and Wang, F.-S. Macromolecules, 2005, 38, 2148.
[9] Simonesn, K. B.; Svenstrup, N.; Lau, J.; Simonsen, O.; M?rk, P.; Kristensen, G. J.; Becher, J. Synthesis 1996, 407.
[10] Fluorescence quantum efficiencies were determined by comparing the integrated fluorescence spectra of the sample with that of a standard (9,10-diphenylanthracene in THF (φf=1.00).
/
〈 |
|
〉 |