综述与进展

过渡金属及主族元素配合物活化NH3中N—H键的研究进展

  • 房华毅 ,
  • 凌镇 ,
  • 付雪峰
展开
  • 北京大学化学与分子工程学院 北京 100871

收稿日期: 2013-01-31

  修回日期: 2013-03-14

  网络出版日期: 2013-03-15

N—H Bond Activation of Ammonia by Transition Metal and Main Group Element Complexes

  • Fang Huayi ,
  • Ling Zhen ,
  • Fu Xuefeng
Expand
  • College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Received date: 2013-01-31

  Revised date: 2013-03-14

  Online published: 2013-03-15

摘要

NH3是一种在自然界生命过程及人类社会化学化工生产过程中非常重要的小分子. 近年来, 在过渡金属元素(如Ir, Rh, Ru, Fe, Pd等)及主族元素(如Si, Ge, Sn等)配合物活化NH3中N—H键的研究方面取得了一系列进展. 介绍这方面研究的新成果.

本文引用格式

房华毅 , 凌镇 , 付雪峰 . 过渡金属及主族元素配合物活化NH3中N—H键的研究进展[J]. 有机化学, 2013 , 33(04) : 738 -748 . DOI: 10.6023/cjoc201301081

Abstract

Activation of ammonia has received increasing attention in recent years due to its important role both in nature and industry processes. A series of transition metal (such as Ir, Rh, Ru, Fe, Pd, etc.) and main group element (such as Si, Ge, Sn, etc.) complexes have been reported to activate N—H bond of ammonia in the past three decades. This review includes the recent progresses in homogeneous N—H bond activation of ammonia by transition metal and main group element complexes.

参考文献

[1] Ritter, P. Biochemistry: A Foundation, Brooks/Cole Publishing Company, Pacific Grove, 1996, pp. 634~637.

[2] Werner, A. Z. Anorg. Allg. Chem, 1893, 3, 267.

[3] Luo, R.-R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, New York, 2007, pp. 369~395.

[4] Haggin, J. Chem. Eng. News 1993, 71, 23.

[5] Hartwig, J. F.; Klinkenberg, J. L. Angew. Chem., Int. Ed. 2011, 50, 86.

[6] van der Vlugt, J. I. Chem. Soc. Rev. 2010, 39, 2302.

[7] Gunanathan, C.; Milstein, D. Angew. Chem., Int. Ed. 2008, 47, 8661.

[8] Pouy, M. J.; Stamley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11312.

[9] Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett. 2007, 9, 3949.

[10] Vo, G. D.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11049.

[11] Kawahara, R.; Fujita, K.-I.; Yamaguchi, R. J. Am. Chem. Soc. 2010, 132, 15108.

[12] Nagano, T.; Kobayashi, S. J. Am. Chem. Soc. 2009, 131, 4200.

[13] Das, K.; Shibuya, R.; Nakahara, Y.; Germain, N.; Ohshima, T.; Mashima, K. Angew. Chem., Int. Ed. 2012, 51, 150.

[14] Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. Inorg. Chem. 1987, 26, 971.

[15] Koelliker, R.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 707.

[16] Koelliker, R.; Milstein, D. J. Am. Chem. Soc. 1991, 113, 8524.

[17] Schulz, M.; Milstein, D. J. Chem. Soc., Chem. Commun. 1993, 318.

[18] Fulton, J. R.; Holland, A. W.; Fox, D. J.; Bergman, R. G. Acc. Chem. Res. 2002, 35, 44

[19] Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds, VCH, New York, 1996, Vol. 1.

[20] Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999.

[21] Roundhill, D. M. Chem. Rev. 1992, 92, 1.

[22] Roundhill, D. M. Catal. Today 1997, 37, 155.

[23] Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.

[24] Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.

[25] Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.

[26] Fulton, J. R.; Sklenak, S.; Bouwkamp, M. W.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 4722.

[27] Fox, D. J.; Bergman, R. G. Organometallics 2004, 23, 1656.

[28] Joslin, F. L.; Johnson, M. P.; Mague, J. T.; Roundhill, D. M. Organometallics 1991, 10, 2781.

[29] Kaplan, A. W.; Ritter, J. C. M.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 6828.

[30] Campora, J.; Palma, P.; del Rio, D.; Conejo, M. M.; Alvarez, E. Organometallics 2004, 23, 5653.

[31] Conner, D.; Jayaprakash, K. N.; Cundari, T. R.; Gunnoe, T. B. Organometallics 2004, 23, 2724.

[32] Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080.

[33] Kanzelberger, M.; Zhang, X.; Emge, T. J.; Goldman, A. S.; Zhao, J.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 13644.

[34] Morgan, E.; MacLean, D. F.; McDonald, R.; Turculet, L. J. Am. Chem. Soc. 2009, 131, 14234.

[35] Kimura, T.; Koiso, N.; Ishiwata, K.; Kuwata, S.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 8880.

[36] Jungton, A.-K.; Herwig, C.; Braun, T.; Limberg, C. Chem. Eur. J. 2012, 18, 10009.

[37] Kläring, P.; Pahl, S.; Braun, T.; Penner, A. Dalton Trans. 2011, 40, 6785.

[38] Mena, I.; Casado, M. A.; García-Orduña, P.; Polo, V.; Lahoz, F. J.; Fazal, A.; Oro, L. A. Angew. Chem., Int. Ed. 2011, 50, 11735.

[39] Nakajima, Y.; Kameo, H.; Suzuki, H. Angew. Chem., Int. Ed. 2006, 45, 950.

[40] Khaskin, E.; Iron, M. A.; Shimon, L. J. W.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 8542.

[41] Ni, C.; Lei, H.; Power, P. P. Organometallics 2010, 29, 1988.

[42] Bryan, E. G.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton Trans. 1977, 1328.

[43] Süss-Fink, G. Z. Naturforsch., B: J. Chem. Sci. 1980, 35, 454.

[44] Johnson, B. F. G.; Lewis, J.; Odiaka, T. I.; Raithby, P. R. J. Organomet. Chem. 1981, 216, C56.

[45] Süss-Fink, G.; Khan, L.; Raithby, P. R. J. Organomet. Chem. 1982, 228, 179.

[46] Armor, J. N. Inorg. Chem. 1978, 17, 203.

[47] Roesky, H. W.; Bai, Y.; Noltemeyer, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 754.

[48] Gómez-Sal, P.; Martín, A.; Mena, M.; Yélamos, C. J. Chem. Soc., Chem. Commun. 1995, 2185.

[49] Abarca, A.; Gómez-Sal, P.; Martín, A.; Mena, M.; Poblet, J. M.; Yélamos, C. Inorg. Chem. 2000, 39, 642.

[50] Ochi, N.; Nakao, Y.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. 2007, 129, 8615.

[51] Hillhouse, G. L.; Bercaw, J. E. J. Am. Chem. Soc. 1984, 106, 5472.

[52] Bercaw, J. E.; Davies, D. L.; Wolczanski, P. T. Organometallics 1986, 5, 443.

[53] Holl, M. M. B.; Wolczanski, P. T.; Vanduyne, G. D. J. Am. Chem. Soc. 1990, 112, 7989.

[54] Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.; Ozerov, O. V. J. Am. Chem. Soc. 2007, 129, 10318.

[55] Power, P. P. Nature 2010, 463, 171.

[56] Power, P. P. Nat. Chem. 2012, 4, 343.

[57] Mandal, S. K.; Roesky, H. W. Acc. Chem. Res. 2012, 45, 298.

[58] Power, P. P. Acc. Chem. Res. 2011, 44, 627.

[59] Fang, H.; Ling, Z.; Brothers, P.; Fu, X. Chem. Commun. 2011, 47, 11677.

[60] Yao, S.; Xiong, Y.; Driess, M. Organometallics 2011, 30, 1748.

[61] Mazumder, B.; Hector, A. L. J. Mater. Chem. 2009, 19, 4673.

[62] Neumayer, D. A.; Ekerdt, J. G. Chem. Mater. 1996, 8, 9.

[63] Dehnicke, K.; Weller, F.; Strähle, J. Chem. Soc. Rev. 2001, 30, 125.

[64] Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.

[65] Hudnall, T. W.; Moerdyk, J. P.; Bielawski, C. W. Chem. Commun. 2010, 46, 4288.

[66] Jana, A.; Schulzke, C.; Roesky, H. W. J. Am. Chem. Soc. 2009, 131, 4600.

[67] Meltzer, A.; Inoue, S.; Präsang, C.; Driess, M. J. Am. Chem. Soc. 2010, 132, 3038.

[68] Xiong, Y.; Yao, S.; Müller, R.; Kaupp, M.; Driess, M. J. Am. Chem. Soc. 2010, 132, 6912.

[69] Wraage, K.; Lameyer, L.; Stalke, D.; Roesky, H. W. Angew. Chem., Int. Ed. 1999, 38, 522.

[70] Stanciu, C.; Hino, S. S.; Stender, M.; Richards, A. F.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 2005, 44, 2774.

[71] Peng, Y.; Guo, J.-D.; Ellis, B. D.; Zhu, Z.; Fettinger, J. C.; Nagase, S.; Power, P. P. J. Am. Chem. Soc. 2009, 131, 16272.

[72] Jana, A.; Objartel, I.; Roesky, H. W.; Stalke, D. Inorg. Chem. 2009, 48, 798.

[73] Peng, Y.; Ellis, B. D.; Wang, X.; Power, P. P. J. Am. Chem. Soc. 2008, 130, 12268. Chase, P. A.; Stephan, D. W. Angew. Chem., Int. Ed. 2008, 47, 7433.
文章导航

/