研究论文

5,10,15,20-四-[4-(N-咔唑)丁烷氧苯基]卟啉及其过渡金属配合物的合成及光电性质研究

  • 王彬彬 ,
  • 单凝 ,
  • 夏爱清 ,
  • 王运方 ,
  • 于苗 ,
  • 师同顺
展开
  • a 吉林大学化学学院 长春 130021;
    b 长春师范大学化学学院 长春 130032

收稿日期: 2013-01-29

  修回日期: 2013-03-15

  网络出版日期: 2013-03-22

基金资助

国家自然科学基金(No. 20801022)资助项目.

Synthesis and Photoelectrical Properties of 5,10,15,20-Tetra{4-[(N-carbazyl)butyloxyphenyl]}porphyrin and Its Transition Metal Complexes

  • Wang Binbin ,
  • Shan Ning ,
  • Xia Aiqing ,
  • Wang Yunfang ,
  • Yu Miao ,
  • Shi Tongshun
Expand
  • a College of Chemistry, Jilin University, Changchun 130021;
    b College of Chemistry, Changchun Normal University, Changchun 130032

Received date: 2013-01-29

  Revised date: 2013-03-15

  Online published: 2013-03-22

Supported by

Project supported by the National Natural Science Foundation of China (No. 20801022).

摘要

设计合成了未见报道的5,10,15,20-四-[4-(N-咔唑)丁烷氧苯基]卟啉(1)及其过渡金属配合物[M=Co (2), Ni (3), Cu (4), Zn (5)]. 通过核磁共振氢谱、紫外-可见光谱、元素分析、红外光谱以及拉曼光谱对过渡金属卟啉配合物进行了表征, 并研究了卟啉样品的荧光性质和表面光电压性质. 卟啉1, 3, 5具有较强的荧光, 其中卟啉5的荧光量子效率超过了ZnTPP, 卟啉24发生荧光淬灭. 卟啉25的表面光电压测试结果表明, 外加电场性质对光电压信号都有比较明显的影响.

本文引用格式

王彬彬 , 单凝 , 夏爱清 , 王运方 , 于苗 , 师同顺 . 5,10,15,20-四-[4-(N-咔唑)丁烷氧苯基]卟啉及其过渡金属配合物的合成及光电性质研究[J]. 有机化学, 2013 , 33(08) : 1810 -1816 . DOI: 10.6023/cjoc201301074

Abstract

A novel 5,10,15,20-tetra{4-[(N-carbazyl)butyloxyphenyl]}porphyrin and its transition metal complexes[M=Co (2), Ni (3), Cu (4), Zn (5)] were prepared and characterized by UV-Vis, 1H NMR, IR, Raman spectra and elemental analyses. Compared with the porphyrin ligand, the number of the absorption bands of the metalloporphyrin complexes decrease, the most remarkable difference was the absence of some Q bands. When the metal ions substituted the protons on the N atoms in pyrrole rings, the symmetry of the molecule was changed from D2h to D4h, therefore their absorption spectra were changed to some extent. The IR bands at 3315 and 966 cm-1 in the free base porphyrin ligand are assigned to the N—H stretching and bending vibration of the porphyrin core, respectively. The N—H stretching and bending vibration disappear in the metallporphyrin complexes, since hydrogen atom in N—H bonding is replaced by transition metal ion. There were high fluorescence intensity and fluorescence quantum yield of the porphyrin ligand and its zinc complex. Fluorescence quantum yield of porphyrin zinc complex was higher than that of ZnTPP. The fluorescence intensity of porphyrin nickel complex was quenched partly but the fluorescence intensity of porphyrin cobalt complex and porphyrin copper complex were quenched completely. This indicates fairly certainly that the spin forbidden process S1~→Tn is predominant for radiationless deactivation of S1 in porphyrin compounds. Contrary to the results of the fluorescence intensity of porphyrin complexes, there were high surface photovoltage of porphyrin cobalt complex and porphyrin copper complex without external field. Competition process was showed between fluorescence intensity and surface photovoltage intensity. Positive external field could increase surface photovoltage intensity of porphyrin complexes. Surface photovoltage spectra of porphyrin complexes were influence by the property of external electric field which indicated that the porphyrin complexes were probably used for photovoltaic materials.

参考文献

[1] (a) Sun, Y.; Hu, X. B.; Li, H. R. Comput. Theor. Chem. 2011, 966, 62.
(b) Abu-Omar, M. M. Dalton Trans. 2011, 40, 3435.
[2] (a) Fukuzumi, S.; Liu, J. Y.; El-Khouly, M. E.; Nq, D. K. Chem. Eur. J. 2011, 17, 1605.
(b) Maligaspe, E.; Kumpulainen, T.; Subbaiyan, N. K.; Zandler, M. E.; Lemmetyinen, H.; Tkachenko, N. V.; D'Souza, F. Phys. Chem. Chem. Phys. 2010, 12, 7434.
(c) Wallin, S.; Monnereau, C.; Blart, E.; Gankou, J. R.; Odobel, F.; Hammarström, L. J. Phys. Chem. A 2010, 114, 1709.
[3] (a) She, C. X.; Lee, S. J.; McGarrah, J. E.; Vura-Weir, J.; Wasielewski, M. R.; Chen, H. N.; Schatz, G. C.; Ratner, M. A.; Hupp, J. T. Chem. Commun. 2010, 46, 547.
(b) Morisue, M.; Morita, T.; Kuroda, Y. Org. Biomol. Chem. 2010, 8, 3457.
[4] (a) Karousis, N.; Sandanayaka, A. S. D.; Hasobe, T. J. Mater. Chem. 2011, 21, 109.
(b) Xiang, N.; Liu, Y. J.; Zhou, W. P.; Huang, H.; Guo, X.; Tan, Z.; Zhao, B.; Shen, P.; Tan, S. T. Eur. Polym. J. 2010, 46, 1084.
(c) Wu, S. L.; Lu, H. P.; Yu, H. T.; Chuang, S. H.; Chiu, C. L.; Lee, C. W.; Diau, E. W. G.; Yeh, C. Y. Energy Environ. Sci. 2010, 3, 949.
[5] (a) Xin, H.; Li, F. Y.; Guan, M.; Huang, C. H.; Sun, M.; Wang, K. Z.; Zhang, Y. A.; Jin, L. P. J. Appl. Phys. 2003, 94, 4729.
(b) Zhang, L. Y.; Li, T. L.; Li, B.; Lei, B. F.; Yue, S. M.; Li, W. L. J. Lumin. 2007, 126, 682.
[6] Li, Y. Q.; Rizzo, A.; Salerno, M.; Mazzeo, M. Appl. Phys. Lett. 2006, 89, 061125.
[7] (a) Lian, W.-H.; Wang, B.-B.; Sun, Y.-Y.; Shan, N.; Yu, L.-X.; Yu, M.; Shi, T.-S. Chin. J. Org. Chem. 2012, 32, 113 (in Chinese).
(连文慧, 王彬彬, 孙园园, 单凝, 于连香, 于苗, 师同顺, 有机化学, 2012, 32, 113.)
(b) Lian, W. H.; Sun, Y. Y.; Wang, B. B.; Shan, N.; Shi, T. S. J. Serb. Chem. Soc. 2012, 77, 335.
[8] Thomas, D. W.; Martell, A. E. J. Am. Chem. Soc. 1956, 78, 1335
[9] Inokuma, Y.; Osuka, A. Org. Lett. 2004, 6, 3663.
[10] Guo, X.-M.; Shi, T.-S.; Su, L.-J. Chem. J. Chin. Univ. 2006, 27, 410 (in Chinese).
(郭喜明, 师同顺, 苏连江, 高等学校化学学报, 2006, 27, 410.)
[11] Sun, Y.-Y.; Lian, W.-H.; Wang, J.-C.; Wang, B.-B.; Shan, N.; Yu, L.-X.; Yu, M.; Shi, T.-S. Acta Chim. Sinica 2011, 69, 2465 (in Chinese)
(孙园园, 连文慧, 王建成, 王彬彬, 单凝, 于连香, 于苗, 师同顺, 化学学报, 2011, 69, 2465).
[12] Sun, E.-J.; Wang, D.; Cheng, X.-L.; Shi, Y.-H.; Shi, T.-S. Chem. J. Chin. Univ. 2007, 28, 1208 (in Chinese).
(孙二军, 王栋, 程秀利, 师宇华, 师同顺, 高等学校化学学报, 2007, 28, 1208.)
[13] Paulat, F.; Franeeth, V. K. K.; Lehnert, N.; Lether, C. Inorg. Chem 2006, 45, 2835.
[14] Quimby, D. J.; Longo, F. R. J. Am. Chem. Soc. 1975, 97, 5111.
[15] Zheng, W. Q.; Shan, N.; Yu, L. X.; Wang, X. Q. Dyes Pigm. 2008, 77, 153.
[16] Zhao, Z. X.; Xie, T. F.; Li, D. M.; Wang, D. J.; Liu, G. F. Synth. Met. 2001, 123, 33.
[17] Guo, X. M.; Shi, T. S. J. Mol. Struct. 2006, 789, 8.
文章导航

/