1-单取代-1,2,3-三唑环的构建进展
收稿日期: 2013-02-28
修回日期: 2013-03-19
网络出版日期: 2013-04-12
基金资助
国家自然科学基金(No. 21262020);云南省科技厅(No. KKSY201207047)资助项目
Advances in the Construction of 1-Monosubstituted 1,2,3-Triazole Ring
Received date: 2013-02-28
Revised date: 2013-03-19
Online published: 2013-04-12
Supported by
Project supported by the National Natural Science Foundation of China (No. 21262020) and the Science and Technology Planning Project of Yunnan Province (No. KKSY201207047)
江玉波 , 韩春美 , 梁雪秋 , 杨朋 , 王红 . 1-单取代-1,2,3-三唑环的构建进展[J]. 有机化学, 2013 , 33(9) : 1884 -1890 . DOI: 10.6023/cjoc201302025
As the 1,2,3-triazole derivatives were used in many expanding areas, its preparation has attracted much attention and obtained encouraging progress in recent years. The construction of the ring of monosubstituted 1,2,3-triazoles is more difficult than that of the other kinds of these heterocycles, owing to the special request for the structure of "alkyne source" and the relatively rigorous reaction conditions required in the system. This review covers the recent construction advances of the heterocycles based on the different moieties, such as acetylene, substituted acetylene, vinyl compounds, and others. Some important mechanisms were also discussed in details.
[1] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
[2] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
[3] Wang, J.-M.; Li, L.-J.; Zhang, G.-S. Chin. J. Org. Chem. 2009, 29, 13 (in Chinese).
(王景梅, 李凌君, 张贵生, 有机化学, 2009, 29, 13.)
[4] Kharb, R.; Yar, M. S.; Sharma, P. C. Min-Rev. Med. Chem. 2011, 11, 84.
[5] Hanselmann, R.; Job, G. E.; Johnson, G.; Lou, R. L.; Martynow, J. G.; Reeve, M. M. Org. Process Res. Dev. 2010, 14, 152.
[6] Zhang, W.-S.; Kuang, C.-X.; Yang, Q. Chin. J. Org. Chem. 2011, 31, 54 (in Chinese).
(张文生, 匡春香, 杨青, 有机化学, 2011, 31, 54.)
[7] Hradilova, L.; Polakova, M.; Dvorakova, B.; Marian, H.; Petrus, L. Carbohyd. Res. 2012, 361, 1.
[8] Suzuki, T.; Ota, Y.; Ri, M.; Bando, M.; Gotoh, A.; Itoh, Y.; Tsumoto, H.; Tatum, P R.; Mizukami, T.; Nakagawa, H. J. Med. Chem. 2012, 55, 9562.
[9] Pericherla, K.; Khedar, P.; Khungar, B.; Kumar, A. Tetrahedron Lett. 2012, 53, 6761.
[10] Naik, R. J.; Kulkarni, M. V.; Pai, K. S. R.; Nayak, P. G. Chem. Biol. Drug Des. 2012, 80, 516.
[11] Sun, L.; Ma, X.-F.; Dong, C.-M.; Zhu, B.-S.; Zhu, X.-Y. Biomacromolecules 2012, 13, 3581.
[12] Golas, P. L.; Matyjaszewski, K. Chem. Soc. Rev. 2010, 39, 1338.
[13] Hua, Y.-R.; Flood, A. H. Chem. Soc. Rev. 2010, 39, 1262.
[14] Rawal, G. K.; Zhang, P.; Ling, C.-C. Org. Lett. 2010, 12, 3096.
[15] Dong, C.-M.; Liu, G. Polym. Chem. 2013, 4, 46.
[16] Jin, J.; Zhang, M.-M.; Xiong, Q.-Q.; Sun, P.-C.; Zhao, H.-Y. Soft Matter 2012, 8, 11809.
[17] Zhao, B.-T.; Liu, L.-W.; Li, X.-C.; Qu, G.-R.; Belhadj, E.; Le Derf, F.; Salle, M. Tetrahedron Lett. 2013, 54, 23.
[18] Saha, S.; Bruening, M. L.; Baker, G. L. Macromolecules 2012, 45, 9063.
[19] Namba, K.; Mera, A.; Osawa, A.; Sakuda, E.; Kitamura, N.; Tanino, K. Org. Lett. 2012, 14, 5554.
[20] Li, Q.-M.; Kang, H.-L.; Liu, R.-G. Chin. J. Chem. 2012, 30, 2169.
[21] Nahrwold, M.; Bogner, T.; Eissler, S.; Verma, S.; Sewald, N. Org. Lett. 2010, 12, 1064.
[22] Mamidyala, S. K.; Finn, M. G. Chem. Soc. Rev. 2010, 39, 1252.
[23] Goyard, D.; Baron, M.; Skourti, P. V.; Chajistamatiou, A. S.; Docsa, T.; Gergely, P.; Chrysina, E. D.; Praly, J.; Vidal, S. Carbohyd. Res. 2012, 364, 28.
[24] Palomo, J. M. Org. Biomol. Chem. 2012, 10, 9309.
[25] Beghdadi, S.; Abdelhedi Miladi, I.; Ben Romdhane, H.; Bernard, J.; Drockenmuller, E. Biomacromolecules 2012, 13, 4138.
[26] Jiang, Y.-B.; Kuang, C.-X. Prog. Chem. 2012, 24, 1983 (in Chinese).
(江玉波, 匡春香, 化学进展, 2012, 24, 1983.)
[27] Zheng, H.; McDonald, R.; Hall, D. Chem. Eur. J. 2010, 16, 5454.
[28] Jeong, Y. K.; Kim, D. Y.; Choi, Y. S.; Ryu, J. S. Org. Biomol. Chem. 2011, 9, 374.
[29] Jeong, Y.; Ryu, J. J. Org. Chem. 2010, 75, 4183.
[30] Fukuzawa, S.; Shimizu, E.; Ogata, K. Heterocycles 2009, 78, 645.
[31] Kauer, J. C.; Carboni, R. A. J. Am. Chem. Soc. 1967, 89, 2633.
[32] Spagnolo, P.; Zanirato, P. J. Org. Chem. 1978, 43, 3539.
[33] Wu, L.-Y.; Xie, Y.-X.; Chen, Z.-S.; Niu, Y.-N.; Liang, Y.-M. Synlett 2009, 1453.
[34] Vereshchagin, L. I.; Tikhonova, L. G.; Maksi-kova, A. V.; Gavrilov, L. D.; Gareev, G. A. Zh. Org. Khim. 1979, 15, 612.
[35] Naud, J.; Lemke, C.; Goudreau, N.; Beaulieu, E.; White, P. D.; Llinas-Brunet, M.; Forgione, P. Bioorg. Med. Chem. Lett. 2008, 18, 3400.
[36] Xu, M.; Kuang, C.-X.; Wang, Z.; Yang, Q.; Jiang, Y.-B. Synthesis 2011, 223.
[37] Kolarovic, A.; Schnurch, M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 2613.
[38] Yang, Q.; Jiang, Y.-B.; Kuang, C.-X. Helv. Chim. Acta 2012, 95, 448.
[39] Chan, D. C. M.; Laughton, C. A.; Queener, S. F.; Stevens, M. F. G. Bioorg. Med. Chem. 2002, 10, 3001.
[40] Fletcher, J. T.; Walz, S. E.; Keeney, M. E. Tetrahedron Lett. 2008, 49, 7030.
[41] Jiang, Y.-B.; Kuang, C.-X.; Yang Q. Synlett 2009, 3163.
[42] Gonda, Z.; Lorincz, K.; Novak, Z. Tetrahedron Lett. 2010, 51, 6275.
[43] Jiang, Y.-B.; Kuang, C.-X.; Yang, Q. Tetrahedron 2011, 67, 289.
[44] Sasaki, T.; Eguchi, S.; Yamaguchi, M.; Esaki, T. J. Org. Chem. 1981, 46, 1800.
[45] Di Nunno, L.; Scilimati, A. Tetrhedron 1986, 42, 3913.
[46] Schwan, A. L.; Warkentin, J. Can. J. Chem. 1988, 66, 2285.
[47] Kadaba, P. K. J. Org. Chem. 1992, 57, 3075.
[48] Hansen, S. G.; Jensen, H. H. Synlett 2009, 3275.
[49] Bertho, A. Eur. J. Inorg. Chem. 1925, 58, 859.
[50] Polanc, S.; Stanovnik, B.; Tisler, M. J. Org. Chem. 1976, 41, 3152.
[51] Harada, K.; Oda, M.; Matsushita, A.; Shirai, M. Heterocycles 1998, 48, 695.
[52] Kaplan, G.; Drake, G.; Tollison, K. J. Heterocycl. Chem. 2005, 42, 19.
/
〈 |
|
〉 |