综述与进展

含氟β-氨基酸和β-内酰胺的合成研究进展

  • 林岱宗 ,
  • 王江 ,
  • 柳红
展开
  • 中国科学院上海药物研究所 新药研究国家重点实验室 上海 201203

收稿日期: 2013-03-15

  修回日期: 2013-04-23

  网络出版日期: 2013-05-09

基金资助

国家杰出青年科学基金(No. 81025017)资助项目

Recent Developments in the Synthesis of Fluorine-Containing β-Amino Acids and β-Lactams

  • Lin Daizong ,
  • Wang Jiang ,
  • Liu Hong
Expand
  • State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203

Received date: 2013-03-15

  Revised date: 2013-04-23

  Online published: 2013-05-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 81025017).

摘要

含氟β-氨基酸和含氟β-内酰胺广泛应用于有机化学、药物发现和蛋白质生物学的研究中. 因而含氟β-氨基酸和含氟β-内酰胺的合成工作深受广大研究者重视, 目前已开发出该类化合物的合成和拆分方法. 依据含氟β-氨基酸种类(α-氟取代β-氨基酸、α-三氟甲基取代β-氨基酸和β-三氟甲基-β-氨基酸), 重点介绍近年来该领域的代表性工作.

本文引用格式

林岱宗 , 王江 , 柳红 . 含氟β-氨基酸和β-内酰胺的合成研究进展[J]. 有机化学, 2013 , 33(10) : 2098 -2107 . DOI: 10.6023/cjoc201303020

Abstract

Fluorine-containing β-amino acids and β-lactams have attracted appreciable attention due to their wide application in organic chemistry, drug discovery, and protein biology. Accordingly, the development of efficient synthetic methods is of considerable interest in academia and industry. The synthesis and resolution are achieved. This review briefly summarizes the recent development in the methodologies for the synthesis of fluorine-containing β-amino acids and β-lactams with classification by the species of the fluorine-containing β-amino acids (α-fluorinated β-amino acids, α-trifluoromethyl β-amino acids, and β-trifluoromethyl β-amino acids).

参考文献

[1] Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785.
[2] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[3] Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
[4] Sutherland, A.; Willis, C. L. Nat. Prod. Rep. 2000, 17, 621.
[5] Qiu, X. L.; Meng, W. D.; Qing, F. L. Tetrahedron 2004, 60, 6711.
[6] Qiu, X. L.; Qing, F. L. Eur. J. Org. Chem. 2011, 3261.
[7] March, T. L.; Johnston, M. R.; Duggan, P. J.; Gardiner, J. Chem. Biodiversity 2012, 9, 2410.
[8] Clader, J. W. J. Med. Chem. 2004, 47, 1.
[9] Rosenblum, S. B.; Huynh, T.; Afonso, A.; Davis, H. R.; Yumibe, N.; Clader, J. W.; Burnett, D. A. J. Med. Chem. 1998, 41, 973.
[10] Nakayama, K.; Kawato, H. C.; Inagaki, H.; Nakajima, R.; Kitamura, A.; Someya, K.; Ohta, T. Org. Lett. 2000, 2, 977.
[11] Kawato, H. C.; Nakayama, K.; Inagaki, H.; Nakajima, R.; Kitamura, A.; Someya, K.; Ohta, T. Org. Lett. 2000, 2, 973.
[12] Thornberry, N. A.; Weber, A. E. Curr. Top. Med. Chem. 2007, 7, 557.
[13] Biftu, T.; Feng, D.; Qian, X. X.; Liang, G. B.; Kieczykowski, G.; Eiermann, G.; Huaibing, H. B.; Lelting, B.; Lyons, K.; Petrov, A.; Sinha-Roy, R.; Zhang, B.; Scapin, G.; Patel, S.; Gao, Y. D.; Singh, S.; Wu, J.; Zhang, X. P.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett. 2007, 17, 49.
[14] Ojima, I.; Lin, S. N.; Slater, J. C.; Wang, T.; Pera, P.; Bernacki, R. J.; Ferlini, C.; Scambia, G. Bioorg. Med. Chem. 2000, 8, 1619.
[15] Pan, Y. H.; Zhao, Y. J.; Ma, T.; Yang, Y. Y.; Liu, H. J.; Jiang, Z. Y.; Tan, C. H. Chem.-Eur. J. 2010, 16, 779.
[16] Andrews, P. C.; Bhaskar, V.; Bromfield, K. M.; Dodd, A. M.; Duggan, P. J.; Duggan, S. A. M.; McCarthy, T. D. Synlett 2004, 791.
[17] Duggan, P. J.; Johnston, M.; March, T. L. J. Org. Chem. 2010, 75, 7365.
[18] Hook, D. F.; Gessier, F.; Noti, C.; Kast, P.; Seebach, D. ChemBioChem 2004, 5, 691.
[19] Davis, F. A.; Reddy, R. E. Tetrahedron: Asymmetry 1994, 5, 955.
[20] Peddie, V.; Pietsch, M.; Bromfield, K. M.; Pike, R. N.; Duggan, P. J.; Abell, A. D. Synthesis-Stuttgart 2010, 1845.
[21] Ohba, T.; Ikeda, E.; Takei, H. Bioorg. Med. Chem. Lett. 1996, 6, 1875.
[22] Gessier, F.; Noti, C.; Rueping, M.; Seebach, D. Helv. Chim. Acta 2003, 86, 1862.
[23] Yoshinari, T.; Gessier, F.; Noti, C.; Beck, A. K.; Seebach, D. Helv. Chim. Acta 2011, 94, 1908.
[24] Thaisrivongs, S.; Schostarez, H. J.; Pals, D. T.; Turner, S. R. J. Med. Chem. 1987, 30, 1837.
[25] Uoto, K.; Ohsuki, S.; Takenoshita, H.; Ishiyama, T.; Iimura, S.; Hirota, Y.; Mitsui, I.; Terasawa, H.; Soga, T. Chem. Pharm. Bull. 1997, 45, 1793.
[26] Fokina, N. A.; Kornilov, A. M.; Kukhar, V. P. J. Fluorine Chem. 2001, 111, 69.
[27] Soloshonok, V. A.; Ohkura, H.; Sorochinsky, A.; Voloshin, N.; Markovsky, A.; Belik, M.; Yamazaki, T. Tetrahedron Lett. 2002, 43, 5445.
[28] Sorochinsky, A.; Voloshin, N.; Markovsky, A.; Belik, M.; Yasuda, N.; Uekusa, H.; Ono, T.; Berbasov, D. O.; Soloshonok, V. A. J. Org. Chem. 2003, 68, 7448.
[29] Staas, D. D.; Savage, K. L.; Homnick, C. F.; Tsou, N. N.; Ball, R. G. J. Org. Chem. 2002, 67, 8276.
[30] Honda, T.; Wakabayashi, H.; Kanai, K. Chem. Pharm. Bull. 2002, 50, 307.
[31] Otaka, A.; Watanabe, J.; Yukimasa, A.; Sasaki, Y.; Watanabe, H.; Kinoshita, T.; Oishi, S.; Tamamura, H.; Fujii, N. J. Org. Chem. 2004, 69, 1634.
[32] Niida, A.; Tomita, K.; Mizumoto, M.; Tanigaki, H.; Terada, T.; Oishi, S.; Otaka, A.; Inui, K.; Fujii, N. Org. Lett. 2006, 8, 613.
[33] Boyer, N.; Gloanec, P.; De Nanteuil, G.; Jubault, P.; Quirion, J. C. Eur. J. Org. Chem. 2008, 4277.
[34] Boyer, N.; Gloanec, P.; De Nanteuil, G.; Jubault, P.; Quirion, J. C. Tetrahedron 2007, 63, 12352.
[35] Sato, K.; Tarui, A.; Matsuda, S.; Omote, M.; Ando, A.; Kumadaki, I. Tetrahedron Lett. 2005, 46, 7679.
[36] Tarui, A.; Ozaki, D.; Nakajima, N.; Yokota, Y.; Sokeirik, Y. S.; Sato, K.; Orriote, M.; Kumadaki, I.; Ando, A. Tetrahedron Lett. 2008, 49, 3839.
[37] Avenoza, A.; Busto, J. H.; Jimenez-Oses, G.; Peregrina, J. M. J. Org. Chem. 2005, 70, 5721.
[38] Pang, W.; Zhu, S. F.; Jiang, H. F.; Zhu, S. Z. Tetrahedron 2006, 62, 11760.
[39] Fustero, S.; Chiva, G.; Piera, J.; Sanz-Cervera, J. F.; Volonterio, A.; Zanda, M.; de Arellano, C. R. J. Org. Chem. 2009, 74, 3122.
[40] Shimada, T.; Yoshioka, M.; Konno, T.; Ishihara, T. Chem. Commun. 2006, 3628.
[41] Jakowiecki, J.; Loska, R.; Makosza, M. J. Org. Chem. 2008, 73, 5436.
[42] Mohar, B.; Stephan, M.; Urleb, U. Tetrahedron 2010, 66, 4144.
[43] Lin, D. Z.; Lv, L.; Wang, J.; Ding, X.; Jiang, H. L.; Liu, H. J. Org. Chem. 2011, 76, 6649.
[44] Jiang, J. L.; Shah, H.; DeVita, R. J. Org. Lett. 2003, 5, 4101.
[45] Michaut, V.; Metz, F.; Paris, J. M.; Plaquevent, J. C. J. Fluorine Chem. 2007, 128, 889.
[46] Ishida, Y.; Iwahashi, N.; Nishizono, N.; Saigo, K. Tetrahedron Lett. 2009, 50, 1889.
[47] Soloshonok, V. A.; Ono, T. J. Org. Chem. 1997, 62, 3030.
[48] Ono, T.; Kukhar, V. P.; Soloshonok, V. A. J. Org. Chem. 1996, 61, 6563.
[49] Soloshonok, V. A.; Ohkura, H.; Yasumoto, M. J. Fluorine Chem. 2006, 127, 924.
[50] Soloshonok, V. A.; Ohkura, H.; Yasumoto, M. J. Fluorine Chem. 2006, 127, 930.
[51] Begue, J. P.; Bonnet-Delpon, D.; Crousse, B.; Legros, J. Chem. Soc. Rev. 2005, 34, 562.
[52] Huguenot, F.; Brigaud, T. J. Org. Chem. 2006, 71, 2159.
[53] Dos Santos, M.; Crousse, B.; Bonnet-Delpon, D. Synlett 2008, 399.
[54] Fustero, S.; Jimenez, D.; Sanz-Cervera, J. F.; Sanchez-Rosello, M.; Esteban, E.; Simon-Fuentes, A. Org. Lett. 2005, 7, 3433.
[55] Sergeeva, N. N.; Golubev, A. S.; Hennig, L.; Findeisen, M.; Paetzold, E.; Oehme, G.; Burger, K. J Fluorine Chem 2001, 111, 41.
[56] Sergeeva, N. N.; Golubev, A. S.; Burger, K. Synthesis-Stuttgart 2001, 281.
[57] Kuznetsova, L.; Ungureanu, I. M.; Pepe, A.; Zanardi, I.; Wu, X. Y.; Ojima, I. J. Fluorine Chem. 2004, 125, 487.
[58] Jiang, Z. X.; Qing, F. L. J. Org. Chem. 2004, 69, 5486.
[59] Rinaudo, G.; Narizuka, S.; Askari, N.; Crousse, B.; Bonnet-Delpon, D. Tetrahedron Lett. 2006, 47, 2065.
[60] Fustero, S.; del Pozo, C.; Catalan, S.; Aleman, J.; Parra, A.; Marcos, V.; Ruano, J. L. G. Org. Lett. 2009, 11, 641.
[61] Ruano, J. L. G.; Aleman, J.; Catalan, S.; Marcos, V.; Monteagudo, S.; Parra, A.; del Pozo, C.; Fustero, S. Angew. Chem., Int. Ed. 2008, 47, 7941.
文章导航

/