研究论文

功能化石墨烯负载毛萼乙素抗肿瘤制剂的研究

  • 徐志远 ,
  • 李永军 ,
  • 史萍 ,
  • 王博婵 ,
  • 黄晓宇
展开
  • a 华东理工大学生物反应器工程国家重点实验室 上海 200237;
    b 中国科学院上海有机化学研究所 上海 200032;
    c 华东理工大学材料科学与工程学院 上海 200237

收稿日期: 2013-06-07

  修回日期: 2013-06-18

  网络出版日期: 2013-06-25

基金资助

国家自然科学基金(Nos. 31100549, 21204098);上海市生物医药科技重点(No. 10431903000)和国家重点实验室专项经费(No. 2060204)资助项目

Functionalized Graphene Oxide as a Nanocarrier for Loading and Delivering of Eriocalyxin B

  • Xu Zhiyuan ,
  • Li Yongjun ,
  • Shi Ping ,
  • Wang Bochan ,
  • Huang Xiaoyu
Expand
  • a State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237;
    b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237

Received date: 2013-06-07

  Revised date: 2013-06-18

  Online published: 2013-06-25

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 31100549, 21204098), the Shanghai Scientific and Technological Innovation Project (No. 10431903000) and the National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204).

摘要

首先通过改进的Hummers法制备了氧化石墨烯(GO), 然后通过酰胺化反应将端基为氨基的六臂聚乙二醇(PEG)连接到氧化石墨烯的表面, 以改善其水溶性和生物相容性. 原子力显微镜(AFM)数据表明所制备的GO-PEG的尺寸小于250 nm, 稳定性试验证明GO-PEG在水和PBS缓冲液中可以很好地分散. 利用制备的GO-PEG作为药物载体, 通过物理共混的方法负载了疏水性抗肿瘤药物——毛萼乙素. 紫外光谱法测得载药率为18.8%. 选择肺癌细胞A549和乳腺癌细胞MCF-7对载药体系的细胞毒性进行了研究, 结果表明即使在高达100 mg/L的浓度下培养48 h, GO-PEG载体对两种细胞仍然具有很小的毒性(相对细胞存活率>85%), 而通过载体负载毛萼乙素后的疗效有所增强, 对癌细胞具有更大的杀伤作用.

本文引用格式

徐志远 , 李永军 , 史萍 , 王博婵 , 黄晓宇 . 功能化石墨烯负载毛萼乙素抗肿瘤制剂的研究[J]. 有机化学, 2013 , 33(10) : 2162 -2168 . DOI: 10.6023/cjoc201306011

Abstract

Graphene oxide (GO) was firstly prepared by modified Hummers method. In order to improve its water solubility and biocompatibility, 6-arm PEG was grafted to GO via a facile amidation reaction. The size of obtained GO-PEG was less than 250 nm. Stability test indicated the good dispersibility of GO-PEG in water and PBS buffer. Furthermore, eriocalyxin B, a widely used cancer chemotherapy drug, is adsorbed onto GO-PEG via physical blending with a drug loading ratio of 18.8% obtained by UV spectrum. Lung cancer cell A549 and breast cancer cell MCF-7 were selected to study the cytotoxicity of GO-PEG/eriocalyxin B, GO-PEG, and free eriocalyxin B. The results demonstrated that GO-PEG nano-carrier possessed low toxicity (relative cell viability>85%), even cultivated for 48 h at a relatively high concentration of 100 mg/L. Compared to pure drug, GO-PEG/eriocalyxin B nanocarrier shows higher cytotoxicity in A549 and MCF-7 cells.

参考文献

[1] (a) Zhou, W. S.; Cheng, Y. X. Acta Chim. Sinica 1990, 48, 1185 (in Chinese).(周维善, 程云行, 化学学报, 1990, 48, 1185.)
(b)Wang, J.; Hou, H. M.; Xia, Y. R.; Sun, H. D.; Pu, J. X. Chin. J. Pharm. 2012, 43, 194 (in Chinese).(王健, 侯惠民, 夏怡然, 孙汉董, 普建新, 中国医药工业杂志, 2012, 43, 194.)
[2] Xia, Y. R.; Wang, J.; Zhu, J. P.; Li, D. Chin. J. Pharm. 2010, 41, 41 (in Chinese). (夏怡然, 王健, 朱金屏, 陈芳, 李丁, 中国医药工业杂志, 2010, 41, 41.)
[3] Zhao, Y.; Niu, X. M.; Qian, L. P.; Liu, Z. Y.; Zhao, Q. S.; Sun, H. D. Eur. J. Med. Chem. 2007, 42, 494
[4] (a) Ojima, I.; Geng, X. D.; Wu, X. Y., Qu, C. X.; Borella, C. P.; Xie, H. S.; Wilhelm, S. D.; Leece, B. A.; Bartle, L. M.; Goldmacher, V. S.; Chari, R. V. J. J. Med. Chem. 2002, 45, 5620.
(b) Zhao, C. W.; Zhuang, X. L.; He, P.; Xiao, C. S.; He, C. L.; Sun, J. R.; Chen, X. S.; Jing, X. B. Polymer 2009, 50, 4308.
[5] (a) Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Cancer Res. 2008, 68, 6625.
(b) Huang, X. W.; Guo, L. N.; Lu, G. L.; Huang, X.; Zhang, Y. Q.; Huang, X. Y. Acta Chim. Sinica 2009, 67, 1363 (in Chinese).(黄晓炜, 顾丽娜, 陆国林, 黄啸, 张亚琴, 黄晓宇, 化学学报, 2009, 67, 1363.)
(c) Chen, S. Y.; Zhao, X. R.; Chen, J. Y.; Chen, J.; Kuznetsova, L.; Wong, S. S.; Ojima, I. Bioconjugate Chem. 2010, 21, 979.
[6] Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano Res. 2008, 1, 203.
[7] (a) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(b) Dai, J.; Lang, M. D. Acta Chim. Sinica 2012, 70, 1237 (in Chinese). (戴静, 郎美东, 化学学报, 2012, 70, 1237.)
(c) Deng, Y.; Li, Y. J.; Dai, J.; Lang, M. D.; Huang, X. Y. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1582.
(d) Wang, B.; Yang, D.; Zhang, J. Z.; Xi, C.; Hu, J. J. Phys. Chem. C 2011, 115, 24636.
[8] (a) He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53.
(b) Deng, Y.; Li, Y. J.; Dai, J.; Lang, M. D.; Huang, X. Y. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 4747.
(c) Chen, X. Y.; Shi, Y. L.; Yang, D.; Hu, J. H.; Yang, P. Y. Acta Chem. Sinica 2012, 70, 817 (in Chinese). (陈小乙, 石远琳, 杨东, 胡建华, 杨芃原, 化学学报, 2012, 70, 817.)
(d) Xu, G. B.; Chen, X. Y.; Hu, J. H.; Yang, P. Y.; Yang, D.; Wei, L. M. Analyst 2012, 137, 2757.
[9] (a) Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. J. Am. Chem. Soc. 2008, 130, 10876.
(b) Bao, H. Q.; Pan, Y. Z.; Ping, Y.; Sahoo, N. G.; Wu, T. F.; Li, L.; Li, J.; Gan, L. H. Small 2011, 7, 1569.
(c) Chen, X. Y.; Yuan, L.; Yang, P. Y.; Hu, J. H.; Yang, D. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 4977.
[10] Xu, Z. Y.; Li, Y. J.; Shi, P.; Wang, B. C.; Huang, X. Y. Chin. J. Org. Chem. 2013, 33, 573 (in Chinese).(徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 573.)
文章导航

/