研究论文

英格拉霉素右部片断的合成

  • 高凯歌 ,
  • 孙默然 ,
  • 朱明 ,
  • 周航 ,
  • 曹其伟 ,
  • 杨华
展开
  • a 郑州大学药学院 郑州 450001;
    b 海口市疾病预防控制中心 海口 571000

收稿日期: 2013-07-06

  修回日期: 2013-07-27

  网络出版日期: 2013-08-13

基金资助

国家自然科学基金(No. 21372205)资助项目

Synthesis of Right Segment of Ingramycin

  • Gao Kaige ,
  • Sun Moran ,
  • Zhu Ming ,
  • Zhou Hang ,
  • Cao Qiwei ,
  • Yang Hua
Expand
  • a School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001;
    b Haikou Center for Diease Control and Prevention, Haikou 571000

Received date: 2013-07-06

  Revised date: 2013-07-27

  Online published: 2013-08-13

Supported by

Project supported by the National Natural Science Foundation of China (No. 21372205)

摘要

英格拉霉素右部片断含有挑战性的手性叔醇结构. 以本实验室发展的[2,3]-Meisenheimer重排为关键反应, 以D-丝氨酸为起始原料, 经Wittig反应、[2,3]-Meisenheimer重排、NaBH4选择性还原酯基等15步反应, 合成了英格拉霉素右部片断, 总收率为28%, ee值为90%.

本文引用格式

高凯歌 , 孙默然 , 朱明 , 周航 , 曹其伟 , 杨华 . 英格拉霉素右部片断的合成[J]. 有机化学, 2013 , 33(9) : 1939 -1944 . DOI: 10.6023/cjoc201307011

Abstract

The right segment of ingramycin contains a synthesis-challenging chiral tertiary alcohol structural motif. Based on methodology developed on our laboratory to construct chiral tertiary alcohols via[2,3]-Meisenheimer rearrangement, the synthesis of right segment of ingramycin was successfully achieved over fifteen steps via successive Wittig reaction,[2,3]-Meisenheimer rearrangement, selective ester group reduction with NaBH4, and etc. The total yield was 28% and ee value was 90%.

参考文献

[1] (a) Furumai, T.; Nagahama, N.; Okuda, T. J. Antibiot., Ser. A 1968, 21, 85.

(b) Bergy, M. E.; Hoeksema, H.; Johnson, L. E.; Kinch, D. G. US 3651219, 1972[Chem. Abstr. 1972, 88, 112769].

[2] Reusser, F. J. Bacteriol. 1969, 100, 11.

[3] (a) Schiewe H. J.; Zeeck, A. J. Antibiot. 1999, 52, 635.

(b) Taddei, A.; Zeeck, A. J. Antibiot. 1997, 50, 526.

[4] Takahashi, T.; Watanabe, H.; Kitahara, T. Tetrahedron Lett. 2003, 44, 9219.

[5] Tietze, L. F.; Völkel, L. Angew. Chem., Int. Ed. 2001, 40, 901.

[6] Li, G.; Yang, X.; Zhai, H. J. Org. Chem. 2009, 74, 1356.

[7] Tanner, D.; Somfai, P. Tetrahedron 1987, 43, 4395.

[8] Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.

[9] Yang, H.; Sun, M.; Zhao, S.; Zhu, M.; Xie, Y.; Niu, C.; Li, C. J. Org. Chem. 2013, 78, 339.

[10] Scholz, D.; Weber-Roth, S.; Macoratti, E.; Francotte, E. Synth. Commun. 1999, 29, 1143.

[11] Kelly, G. T.; Sharma, V.; Watanabe, C. M. H. Bioorg. Chem. 2008, 36, 4.

[12] Qiu, X.; Qing, F.-l. J. Chem. Soc., Perkin Trans. 1 2002, 2052.

[13] Yang, X.; Zou, X.; Fu, Y.; Mou, K.; Fu, G.; Ma, C.; Xu, P. Synth. Commun. 2007, 37, 9

[14] Li, L.-C.; Jiang, J.-X.; Ren, J.; Ren, Y.;. Pittman Jr., C. U.; Zhu, H.-J. Eur. J. Org. Chem. 2006, 1981.

[15] Kutsumura, N.; Nishiyama, S. J. Carbohydr. Chem. 2006, 25, 377.

[16] Luca, L. D.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 3041.

[17] Henegar, K. E.; Ashford, S. W.; Baughman, T. A.; Sih, J. C.; Gu, R.-L. J. Org. Chem. 1997, 62, 6588.

[18] Eey, S. T.-C.; Lear, M. J. Org. Lett. 2010, 12, 5510.

[19] Ermert, P.; Meyer, J.; Stucki, C.; Schneebeli, J.; Obrecht, J.-P. Tetrahedron Lett. 1988, 29, 1265.

[20] Kumarn, S.; Shaw, D. M.; Longbottom, D. A.; Ley, S. V. Org. Lett. 2005, 7, 4189.

[21] Goldman, I. M. J. Org. Chem. 1969, 34, 3289.

文章导航

/