综述与进展

镍催化酚衍生物的Suzuki-Miyaura偶联反应研究进展

  • 陈国军 ,
  • 杜建时
展开
  • a 长春工程学院理学院 长春 130012;
    b 吉林大学中日联谊医院血管外科 长春 130033

收稿日期: 2013-07-23

  修回日期: 2013-09-06

  网络出版日期: 2013-09-25

Progress of Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Phenol Derivatives

  • Chen Guojun ,
  • Du Jianshi
Expand
  • a College of Science, Changchun Institute of Technology, Changchun 130012;
    b Vascular Surgery, The Third Hospital of Jilin University, Changchun 130033

Received date: 2013-07-23

  Revised date: 2013-09-06

  Online published: 2013-09-25

摘要

过渡金属镍催化的Suzuki-Miyaura偶联反应在有机合成中有着广泛的应用. 综述了近年来以过渡金属镍催化的以酚的衍生物为底物的偶联反应的研究进展. 主要包括芳基磺酸酯、氨基磺酸芳基酯、碳酸芳基酯、芳基羧酸酯、氨基甲酸芳基酯、芳基磷酸酯、芳醚、杂芳醚和酚盐的偶联反应.

本文引用格式

陈国军 , 杜建时 . 镍催化酚衍生物的Suzuki-Miyaura偶联反应研究进展[J]. 有机化学, 2014 , 34(1) : 65 -80 . DOI: 10.6023/cjoc201307035

Abstract

Suzuki-Miyaura coupling reaction catalyzed by transition-metal nickel is widely used in organic synthesis. In this review, the development of transition-metal nickel-catalyzed cross-coupling reactions is summarized, mainly including aryl sulfonates, aryl sulfamates, aryl carbonates, aryl carboxylates, aryl carbamates, aryl phosphorus derivatives, aryl ethers, aryl heteroaryl ethers and phenolate.

参考文献

[1] Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147 (in Chinese).

(张丹, 秦勇, 化学学报, 2013, 71, 147.)

[2] Wen, Y.-M.; Jiang, H.-F. Acta Chim. Sinica 2012, 70, 1716 (in Chinese).

(温燕梅, 江焕峰, 化学学报, 2012, 70, 1716.)

[3] Pan, F.; Shi, Z.-J. Acta Chim. Sinica 2012, 70, 1679 (in Chinese).

(潘菲, 施章杰, 化学学报, 2012, 70, 1679.)

[4] Jin, L.-Q.; Luo, X.-C.; Lei, A.-W. Acta Chim. Sinica 2012, 70, 1538 (in Chinese).

(靳立群, 罗贤才, 雷爱文, 化学学报, 2012, 70, 1538.)

[5] Hassan, J.; Sevignom, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.

[6] Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.

[7] Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.

[8] Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.

[9] Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270.

[10] Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060.

[11] Ueda, M.; Saitoh, A.; Oh-tani, S.; Miyaura, N. Tetrahedron 1998, 54, 13079.

[12] Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 3, 3049.

[13] Kobayashi, Y.; Mizojiri, R. Tetrahedron Lett. 1996, 37, 8531.

[14] Kobayashi, Y.; William, A. D.; Mizojiri, R. J. Organomet. Chem. 2002, 653, 91.

[15] Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 126 , 3058.

[16] Tang, Z.-Y.; Spinella, S.; Hu, Q.-S. Tetrahedron Lett. 2006, 47, 2427.

[17] Wilson, D. A.; Wilson, C. J.; Rosen, B. M.; Percec, V. Org. Lett. 2008, 10, 4879.

[18] Leowanawat, P.; Zhang, N.; Resmerita, A.-M.; Rosen, B. M.; Percec, V. J. Org. Chem. 2011, 76, 9946.

[19] Lipshutz, B. H.; Butler, T.; Swift, E. Org. Lett. 2008, 10, 697.

[20] Kuroda, J.; Inamoto, K.; Hiroya, K.; Doi, T. Eur. J. Org. Chem. 2009, 2251.

[21] Tu, T.; Mao, H.; Herbert, C.; Xu, M.-Z.; Dötz, K. H. Chem. Commun. 2010, 46, 7796.

[22] Molander, G. A.; Beaumard, F. Org. Lett. 2010, 12, 4022.

[23] Fan, X.-H.; Yang, L.-M. Eur. J. Org. Chem. 2010, 2457.

[24] Fan, X.-H.; Yang, L.-M. Eur. J. Org. Chem. 2011, 1467.

[25] Leowanawat, P.; Zhang, N.; Safi, M.; Hoffman, D. J.; Fryberger, M. C.; George, A.; Percec, V. J. Org. Chem. 2012, 77, 2885.

[26] Xing, C.-H.; Lee, J.-R.; Tang, Z.-Y.; Zheng, J.-R.; Hu, Q.-S. Adv. Synth. Catal. 2011, 353, 2051.

[27] Leowanawat, P.; Zhang, N.; Percec, V. J. Org. Chem. 2012, 77, 1018.

[28] Zhang, N.; Hoffman, D. J.; Gutsche, N.; Gupta, J.; Percec, V. J. Org. Chem. 2012, 77, 5956.

[29] Gao, H.; Li, Y.; Zhou, Y.-G.; Han, F.-S.; Lin, Y.-J. Adv. Synth. Catal. 2011, 353, 309.

[30] Quasdorf, K. W.; Riener, M.; Petrova, K. V.; Garg, N. K. J. Am. Chem. Soc. 2009, 131, 17748.

[31] Quasdorf, K. W.; Antoft-Finch, A.; Liu, P.; Silberstein, A. L.; Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk, K. N.; Snieckus, V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352.

[32] Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 1507.

[33] Chen, G.-J.; Han, F.-S. Eur. J. Org. Chem. 2012, 3575.

[34] Kuwano, R.; Shimizu, R. Chem. Lett. 2011, 40, 913.

[35] Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 14468.

[36] Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422.

[37] Li, Z.; Zhang, S.-L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815.

[38] Antoft-Finch, A.; Blackburn, T.; Snieckus, V. J. Am. Chem. Soc. 2009, 131, 17750.

[39] Xu, L.; Li, B.-J.; Wu, Z.-H.; Lu, X.-Y.; Guan, B.-T.; Wang, B.-Q.; Zhao, K.-Q.; Shi, Z.-J. Org. Lett. 2010, 12, 884.

[40] Zhao, Y.-L.; Li, Y.; Li, Y.; Gao, L.-X.; Han, F.-S. Chem.-Eur. J. 2010, 16, 4991.

[41] Chen, G.-J.; Huang, J.; Gao, L.-X.; Han, F.-S. Chem.-Eur. J. 2011, 17, 4038.

[42] Li, S.-M.; Huang, J.; Chen, G.-J.; Han, F.-S. Chem. Commun. 2011, 47, 12840.

[43] Chen, H.; Huang, Z.-B.; Hu, X.-M.; Tang, G.; Xu, P.-X.; Zhao, Y.-F.; Cheng, C.-H. J. Org. Chem. 2011, 76, 2338.

[44] Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008, 47, 4866.

[45] Li, X.-J.; Zhang, J.-L.; Geng, Y.; Jin, Z. J. Org. Chem. 2013, 78, 5078.

[46] Yu, D.-G.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 7097.

文章导航

/