多齿络合法分离锂同位素的冠醚化学
收稿日期: 2013-07-19
修回日期: 2013-10-11
网络出版日期: 2013-10-16
基金资助
中国科学院战略性先导科技专项(No.XDA01020304)资助项目.
Crown Ether Chemistry of Polydentate Complexing for Lithium Isotope Separation
Received date: 2013-07-19
Revised date: 2013-10-11
Online published: 2013-10-16
Supported by
Project supported by the "Stategic Priority Research Program" of the Chinese Academy of Science (No. XDA01020304).
刘华 , 黄祚刚 , 文珂 , 姜标 . 多齿络合法分离锂同位素的冠醚化学[J]. 有机化学, 2014 , 34(2) : 316 -324 . DOI: 10.6023/cjoc201307029
The two naturally occurring isotopes of lithium, 6Li and 7Li, have important roles in the nuclear energy industry. Among many techniques for the separation of lithium isotopes, high isotope separation factors are usually realized with the polydentate complex method. Crown ethers, for their selective-complexing ability with metal cations, have been regarded as perhaps the most effective extractants for lithium isotope separation. This review summarizes the application of crown ether and crown ether chelating resin for lithium isotope separation based on polydentate complexing method, exemplify recent developments in complexation of metal-containing crown ethers with metal cations, and prospect their potential in separation of lithium isotopes.
[1] Ache, H. J. Angew. Chem., Int. Ed. 1989, 28, 1.
[2] Symons, E. A. Sep. Sci. Technol. 1985, 20, 633.
[3] Liu, Y.-F.; Fu, K.-J. At. Energy Sci. Technol. 1963, 796 (in Chinese).
(刘元芳, 傅克坚, 原子能科学技术, 1963, 796.)
[4] Xiao, X.-A.; Wang, D.-X. J. Nucl. Radiochem. 1991, 13, 1 (in Chinese).
(肖啸菴, 汪德熙, 核化学与放射化学, 1991, 13, 1.)
[5] Lewis, G. N.; Macdonald, R. T. J. Am. Chem. Soc. 1936, 58, 2519.
[6] Brooks, S. C.; Southworth, G. R. Environ. Pollut. 2011, 159, 219.
[7] Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.
[8] Dietrich, B.; Lehn, J. M.; Sauvage, J. P. Tetrahedron Lett. 1969, 10, 2885.
[9] Alexandratos, S. D.; Stine, C. L. React. Funct. Polym. 2004, 60, 3.
[10] Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.
[11] Gokel, G. W.; Daschbach, M. M. Coord. Chem. Rev. 2008, 252, 886.
[12] Olsher, U.; Izatt, R. M.; Bradshaw, J. S.; Dalley, N. K. Chem. Rev. 1991, 91, 137.
[13] Shirai, A.; Ikeda, Y. Inorg. Chem. 2011, 50, 1619.
[14] Jepson, B. E.; Carins, G. A. Report MLM-2622, 1979.
[15] Chen, Y.-H. Chin. J. Rare Met. 1983, 79 (in Chinese).
(陈耀焕, 稀有金属, 1983, 79.)
[16] Li, T.-W. At. Energy Sci. Technol. 1990, 24, 87 (in Chinese).
(李廷伍, 原子能科学与技术, 1990, 24, 87.)
[17] Gu, Z.-G.; Li, Z.-J.; Yang, J. Prog. Chem. 2011, 23, 1892 (in Chinese).
(顾志国, 李在均, 杨杰, 化学进展, 2011, 23, 1892.)
[18] Zhi, K.-Z.; Dou, F.-Q.; Yang, K.-S. At. Energy Sci. Technol. 1982, 16, 686 (in Chinese).
(支克正, 窦富全, 杨坤山, 原子能科学技术, 1982, 16, 686.)
[19] Zhi, K.-Z.; Dou, F.-Q.; Yang, K.-S. At. Energy Sci. Technol. 1983, 17, 347 (in Chinese).
(支克正, 窦富全, 杨坤山, 原子能科学技术, 1983, 17, 347.)
[20] Fang, S.-Q.; Fu, L.-A. J. Nucl. Radiochem. 1984, 6, 40 (in Chinese).
(方胜强, 傅立安, 核化学与放射化学, 1984, 6, 40.)
[21] Fang, S.-Q.; Zhi, K.-Z.; Fu, L.-A. J. Nucl. Radiochem. 1987, 9, 142 (in Chinese).
(方胜强, 支克正, 傅立安, 核化学与放射化学, 1987, 9, 142.)
[22] Chen, Y.-H.; Sheng, H.-Y. At. Energy Sci. Technol. 1985, 19, 595 (in Chinese).
(陈耀焕, 盛怀禹, 原子能科学技术, 1985, 19, 595.)
[23] Jiang, Y.-L.; Zhang, X.-X.; Qian, J.-H. At. Energy Sci. Technol. 1986, 20, 2 (in Chinese).
(姜延林, 张心祥, 钱建华, 原子能科学技术, 1986, 20, 2.)
[24] Fu, L.-A.; Fang, S.-Q.; Zhang, F.-S. J. Nucl. Radiochem. 1989, 11, 142 (in Chinese).
(傅立安, 方胜强, 张复昇, 核化学与放射化学, 1989, 11, 142.)
[25] Fang, S.-Q.; Fu, L.-A. J. Nucl. Radiochem. 1991, 13, 87 (in Chinese).
(方胜强, 傅立安, 核化学与放射化学, 1991, 13, 87.)
[26] Fang, S.-Q.; Fu, L.-A.; Gao, Z.-C. J. Nucl. Radiochem. 1992, 14, 111 (in Chinese).
(方胜强, 傅立安, 高志昌, 核化学与放射化学, 1992, 14, 111.)
[27] Fang, S.-Q.; Fu, L.-A. J. Isotopes 1994, 7, 168 (in Chinese).
(方胜强, 傅立安, 同位素, 1994, 7, 168.)
[28] Jin, J.-N.; Wang, Q.-J.; Meng, M.-L. J. Sichuan Univ. 1999, 36, 903 (in Chinese).
(金建南, 王全基, 孟明礼, 四川大学学报, 1999, 36, 903.)
[29] Fujine, S.; Saito, K.; Shiba, K. J. Nucl. Sci. Technol. 1983, 20, 439.
[30] Nishizawa, K.; Watanabe, H.; Ishino, S.; Shinagawa, M. J. Nucl. Sci. Technol. 1984, 21, 133.
[31] Kim, D. W.; Jeon, Y. S.; Eom, T. Y.; Suh, M. Y.; Lee, C. H. J. Radioanal. Nucl. Chem. 1991, 150, 417.
[32] Kim, D. W.; Jeon, Y. S.; Jeong, Y. K.; Suh, M. Y.; Joe, K. S. J. Radioanal. Nucl. Chem. 1995, 189, 219.
[33] Kim, D. W.; Hong, C. P.; Kim, C. S.; Jeong, Y. K.; Jeon, Y. S.; Lee, J. K. J. Radioanal. Nucl. Chem. 1997, 220, 229.
[34] Kim, D. W.; Jang, Y. H.; Lee, N. S.; Chung, Y. S.; Kim, K. Y.; Park, S. U.; Kim, C. S. J. Radioanal. Nucl. Chem. 1999, 240, 155.
[35] Kim, D. W.; Kim, C. S.; Jeon, J. S.; Kim, J. S.; Lee, N. S. J. Radioanal. Nucl. Chem. 1999, 241, 379.
[36] Kim, D. W.; Kim, B. K.; Park, S. R.; Lee, N. S.; Jeon, Y. S.; Choi, K. Y.; Lee, Y. I. J. Radioanal. Nucl. Chem. 1998, 232, 257.
[37] Kim, D. W.; Park, H. K.; Kim, C. S.; Jeon, Y. S. J. Radioanal. Nucl. Chem. 1999, 242, 769.
[38] Kim, D. W. J. Radioanal. Nucl. Chem. 2002, 253, 67.
[39] Kim, D. W.; Kim, C. S.; Lee, N. S.; Ryuc, H.; Kim, J. S.; Jang, Y. H. Naturforscher 2002, 57, 107.
[40] Kim, D. W.; Park, S. R.; Kim, S. J.; Kim, H. J. J. Radioanal. Nucl. Chem. 1998, 229, 165.
[41] Kim, D. W.; Kim, H. J.; Kim, M. S.; Choi, K. Y.; Kwon, S. H.; Shin, J. S.; Kim, J. S. J. Radioanal. Nucl. Chem. 2001, 247, 385.
[42] Kim, D. W.; Kim, J. S.; Jeon, J. S.; Kim, H. J.; Lee, N. S. J. Radioanal. Nucl. Chem. 1999, 242, 215.
[43] Kim, D. W.; Kim, H. J.; Jeon, J. S.; Choi, K. Y.; Jeon, Y. S. J. Radioanal. Nucl. Chem. 2000, 245, 571.
[44] Kim, D. W.; Kang, B. M.; Jeon, B. K.; Jeon, Y. S. J. Radioanal. Nucl. Chem. 2003, 256, 81.
[45] Ban, Y.; Nomura, M.; Fujii, Y. J. Nucl. Sci. Technol. 2002, 39, 279.
[46] Otake, K.; Suzuki, T.; Kim, H. J.; Nomura, M.; Fujji, Y. J. Nucl. Sci. Technol. 2006, 43, 419.
[47] Jeon, Y. S.; Jang, N. H.; Kang, B. M.; Jeon, Y. S.; Kim, C. S.; Choi, K. M.; Ryu, H. Bull. Korean Chem. Soc. 2007, 28, 451.
[48] Lee, D. A. J. Inorg. Nucl. Chem. 1976, 38, 161.
[49] Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Chem. Rev. 2007, 107, 4933.
[50] Piotrowski, H.; Polborn, K.; Hilt, G.; Severin, K. J. Am. Chem. Soc. 2001, 123, 2699.
[51] Piotrowski, H.; Hilt, G.; Schulz, A.; Mayer, P.; Polborn, K.; Severin, K. Chem. Eur. J. 2001, 7, 3196.
[52] Severin, K. Coord. Chem. Rev. 2003, 245, 3.
[53] Grote, Z.; Lehaire, M.-L.; Scopelliti, R.; Severin, K. J. Am. Chem. Soc. 2003, 125, 13638.
[54] Grote, Z.; Scopelliti, R.; Severin, K. J. Am. Chem. Soc. 2004, 126, 16959.
[55] Grote, Z.; Wizemann, H. D.; Scopelliti, R.; Severin, K. Z. Anorg. Allg. Chem. 2007, 633, 858.
[56] Katsuta, S.; Iwabe, Y.; Kato, Y.; Kudo, Y.; Takeda, Y. Inorg. Chim. Acta 2008, 361, 103.
[57] Graf, E.; Hosseini, M. W. Coord. Chem. Rev. 1998, 178~180, 1193.
[58] Abe, A. M. M.; Helaja, J.; Koskinen, A. M. P. Org. Lett. 2006, 8, 4537.
[59] Arens, V. A.; Dietz, C.; Schollmeyer, D.; Jurkschat, K. Organometallics 2013, 32, 2775.
[60] Wendji, A. S.; Lutter, M.; Dietz, C.; Jouikov, V.; Jurkschat, K. Organometallics 2013, 32, 5720.
[61] Boda, A.; Ali, S. M.; Rao, H.; Ghosh, S. K. J. Mol. Model. 2012, 18, 3507.
/
〈 |
|
〉 |