综述与进展

多齿络合法分离锂同位素的冠醚化学

  • 刘华 ,
  • 黄祚刚 ,
  • 文珂 ,
  • 姜标
展开
  • a 中国科学院上海高等研究院 上海 201210;
    b 中国科学院上海有机化学研究所 上海 200032

收稿日期: 2013-07-19

  修回日期: 2013-10-11

  网络出版日期: 2013-10-16

基金资助

中国科学院战略性先导科技专项(No.XDA01020304)资助项目.

Crown Ether Chemistry of Polydentate Complexing for Lithium Isotope Separation

  • Liu Hua ,
  • Huang Zuogang ,
  • Wen Ke ,
  • Jiang Biao
Expand
  • a Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210;
    b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2013-07-19

  Revised date: 2013-10-11

  Online published: 2013-10-16

Supported by

Project supported by the "Stategic Priority Research Program" of the Chinese Academy of Science (No. XDA01020304).

摘要

锂的两种天然同位素锂-6和锂-7在核能工业中具有重要的作用. 在众多锂同位素的分离方法和体系中,多齿络合法普遍具有较高的同位素分离系数. 冠醚由于其对金属阳离子具有较强的选择性络合能力,被认为是多齿络合法分离锂同位素最有效的萃取剂. 综述了冠醚及冠醚树脂在多齿络合法分离锂同位素中的应用,并简述新型金属冠醚与金属离子络合的进展,展望其在锂同位素分离中的潜在应用前景.

本文引用格式

刘华 , 黄祚刚 , 文珂 , 姜标 . 多齿络合法分离锂同位素的冠醚化学[J]. 有机化学, 2014 , 34(2) : 316 -324 . DOI: 10.6023/cjoc201307029

Abstract

The two naturally occurring isotopes of lithium, 6Li and 7Li, have important roles in the nuclear energy industry. Among many techniques for the separation of lithium isotopes, high isotope separation factors are usually realized with the polydentate complex method. Crown ethers, for their selective-complexing ability with metal cations, have been regarded as perhaps the most effective extractants for lithium isotope separation. This review summarizes the application of crown ether and crown ether chelating resin for lithium isotope separation based on polydentate complexing method, exemplify recent developments in complexation of metal-containing crown ethers with metal cations, and prospect their potential in separation of lithium isotopes.

参考文献

[1] Ache, H. J. Angew. Chem., Int. Ed. 1989, 28, 1.

[2] Symons, E. A. Sep. Sci. Technol. 1985, 20, 633.

[3] Liu, Y.-F.; Fu, K.-J. At. Energy Sci. Technol. 1963, 796 (in Chinese).

(刘元芳, 傅克坚, 原子能科学技术, 1963, 796.)

[4] Xiao, X.-A.; Wang, D.-X. J. Nucl. Radiochem. 1991, 13, 1 (in Chinese).

(肖啸菴, 汪德熙, 核化学与放射化学, 1991, 13, 1.)

[5] Lewis, G. N.; Macdonald, R. T. J. Am. Chem. Soc. 1936, 58, 2519.

[6] Brooks, S. C.; Southworth, G. R. Environ. Pollut. 2011, 159, 219.

[7] Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.

[8] Dietrich, B.; Lehn, J. M.; Sauvage, J. P. Tetrahedron Lett. 1969, 10, 2885.

[9] Alexandratos, S. D.; Stine, C. L. React. Funct. Polym. 2004, 60, 3.

[10] Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723.

[11] Gokel, G. W.; Daschbach, M. M. Coord. Chem. Rev. 2008, 252, 886.

[12] Olsher, U.; Izatt, R. M.; Bradshaw, J. S.; Dalley, N. K. Chem. Rev. 1991, 91, 137.

[13] Shirai, A.; Ikeda, Y. Inorg. Chem. 2011, 50, 1619.

[14] Jepson, B. E.; Carins, G. A. Report MLM-2622, 1979.

[15] Chen, Y.-H. Chin. J. Rare Met. 1983, 79 (in Chinese).

(陈耀焕, 稀有金属, 1983, 79.)

[16] Li, T.-W. At. Energy Sci. Technol. 1990, 24, 87 (in Chinese).

(李廷伍, 原子能科学与技术, 1990, 24, 87.)

[17] Gu, Z.-G.; Li, Z.-J.; Yang, J. Prog. Chem. 2011, 23, 1892 (in Chinese).

(顾志国, 李在均, 杨杰, 化学进展, 2011, 23, 1892.)

[18] Zhi, K.-Z.; Dou, F.-Q.; Yang, K.-S. At. Energy Sci. Technol. 1982, 16, 686 (in Chinese).

(支克正, 窦富全, 杨坤山, 原子能科学技术, 1982, 16, 686.)

[19] Zhi, K.-Z.; Dou, F.-Q.; Yang, K.-S. At. Energy Sci. Technol. 1983, 17, 347 (in Chinese).

(支克正, 窦富全, 杨坤山, 原子能科学技术, 1983, 17, 347.)

[20] Fang, S.-Q.; Fu, L.-A. J. Nucl. Radiochem. 1984, 6, 40 (in Chinese).

(方胜强, 傅立安, 核化学与放射化学, 1984, 6, 40.)

[21] Fang, S.-Q.; Zhi, K.-Z.; Fu, L.-A. J. Nucl. Radiochem. 1987, 9, 142 (in Chinese).

(方胜强, 支克正, 傅立安, 核化学与放射化学, 1987, 9, 142.)

[22] Chen, Y.-H.; Sheng, H.-Y. At. Energy Sci. Technol. 1985, 19, 595 (in Chinese).

(陈耀焕, 盛怀禹, 原子能科学技术, 1985, 19, 595.)

[23] Jiang, Y.-L.; Zhang, X.-X.; Qian, J.-H. At. Energy Sci. Technol. 1986, 20, 2 (in Chinese).

(姜延林, 张心祥, 钱建华, 原子能科学技术, 1986, 20, 2.)

[24] Fu, L.-A.; Fang, S.-Q.; Zhang, F.-S. J. Nucl. Radiochem. 1989, 11, 142 (in Chinese).

(傅立安, 方胜强, 张复昇, 核化学与放射化学, 1989, 11, 142.)

[25] Fang, S.-Q.; Fu, L.-A. J. Nucl. Radiochem. 1991, 13, 87 (in Chinese).

(方胜强, 傅立安, 核化学与放射化学, 1991, 13, 87.)

[26] Fang, S.-Q.; Fu, L.-A.; Gao, Z.-C. J. Nucl. Radiochem. 1992, 14, 111 (in Chinese).

(方胜强, 傅立安, 高志昌, 核化学与放射化学, 1992, 14, 111.)

[27] Fang, S.-Q.; Fu, L.-A. J. Isotopes 1994, 7, 168 (in Chinese).

(方胜强, 傅立安, 同位素, 1994, 7, 168.)

[28] Jin, J.-N.; Wang, Q.-J.; Meng, M.-L. J. Sichuan Univ. 1999, 36, 903 (in Chinese).

(金建南, 王全基, 孟明礼, 四川大学学报, 1999, 36, 903.)

[29] Fujine, S.; Saito, K.; Shiba, K. J. Nucl. Sci. Technol. 1983, 20, 439.

[30] Nishizawa, K.; Watanabe, H.; Ishino, S.; Shinagawa, M. J. Nucl. Sci. Technol. 1984, 21, 133.

[31] Kim, D. W.; Jeon, Y. S.; Eom, T. Y.; Suh, M. Y.; Lee, C. H. J. Radioanal. Nucl. Chem. 1991, 150, 417.

[32] Kim, D. W.; Jeon, Y. S.; Jeong, Y. K.; Suh, M. Y.; Joe, K. S. J. Radioanal. Nucl. Chem. 1995, 189, 219.

[33] Kim, D. W.; Hong, C. P.; Kim, C. S.; Jeong, Y. K.; Jeon, Y. S.; Lee, J. K. J. Radioanal. Nucl. Chem. 1997, 220, 229.

[34] Kim, D. W.; Jang, Y. H.; Lee, N. S.; Chung, Y. S.; Kim, K. Y.; Park, S. U.; Kim, C. S. J. Radioanal. Nucl. Chem. 1999, 240, 155.

[35] Kim, D. W.; Kim, C. S.; Jeon, J. S.; Kim, J. S.; Lee, N. S. J. Radioanal. Nucl. Chem. 1999, 241, 379.

[36] Kim, D. W.; Kim, B. K.; Park, S. R.; Lee, N. S.; Jeon, Y. S.; Choi, K. Y.; Lee, Y. I. J. Radioanal. Nucl. Chem. 1998, 232, 257.

[37] Kim, D. W.; Park, H. K.; Kim, C. S.; Jeon, Y. S. J. Radioanal. Nucl. Chem. 1999, 242, 769.

[38] Kim, D. W. J. Radioanal. Nucl. Chem. 2002, 253, 67.

[39] Kim, D. W.; Kim, C. S.; Lee, N. S.; Ryuc, H.; Kim, J. S.; Jang, Y. H. Naturforscher 2002, 57, 107.

[40] Kim, D. W.; Park, S. R.; Kim, S. J.; Kim, H. J. J. Radioanal. Nucl. Chem. 1998, 229, 165.

[41] Kim, D. W.; Kim, H. J.; Kim, M. S.; Choi, K. Y.; Kwon, S. H.; Shin, J. S.; Kim, J. S. J. Radioanal. Nucl. Chem. 2001, 247, 385.

[42] Kim, D. W.; Kim, J. S.; Jeon, J. S.; Kim, H. J.; Lee, N. S. J. Radioanal. Nucl. Chem. 1999, 242, 215.

[43] Kim, D. W.; Kim, H. J.; Jeon, J. S.; Choi, K. Y.; Jeon, Y. S. J. Radioanal. Nucl. Chem. 2000, 245, 571.

[44] Kim, D. W.; Kang, B. M.; Jeon, B. K.; Jeon, Y. S. J. Radioanal. Nucl. Chem. 2003, 256, 81.

[45] Ban, Y.; Nomura, M.; Fujii, Y. J. Nucl. Sci. Technol. 2002, 39, 279.

[46] Otake, K.; Suzuki, T.; Kim, H. J.; Nomura, M.; Fujji, Y. J. Nucl. Sci. Technol. 2006, 43, 419.

[47] Jeon, Y. S.; Jang, N. H.; Kang, B. M.; Jeon, Y. S.; Kim, C. S.; Choi, K. M.; Ryu, H. Bull. Korean Chem. Soc. 2007, 28, 451.

[48] Lee, D. A. J. Inorg. Nucl. Chem. 1976, 38, 161.

[49] Mezei, G.; Zaleski, C. M.; Pecoraro, V. L. Chem. Rev. 2007, 107, 4933.

[50] Piotrowski, H.; Polborn, K.; Hilt, G.; Severin, K. J. Am. Chem. Soc. 2001, 123, 2699.

[51] Piotrowski, H.; Hilt, G.; Schulz, A.; Mayer, P.; Polborn, K.; Severin, K. Chem. Eur. J. 2001, 7, 3196.

[52] Severin, K. Coord. Chem. Rev. 2003, 245, 3.

[53] Grote, Z.; Lehaire, M.-L.; Scopelliti, R.; Severin, K. J. Am. Chem. Soc. 2003, 125, 13638.

[54] Grote, Z.; Scopelliti, R.; Severin, K. J. Am. Chem. Soc. 2004, 126, 16959.

[55] Grote, Z.; Wizemann, H. D.; Scopelliti, R.; Severin, K. Z. Anorg. Allg. Chem. 2007, 633, 858.

[56] Katsuta, S.; Iwabe, Y.; Kato, Y.; Kudo, Y.; Takeda, Y. Inorg. Chim. Acta 2008, 361, 103.

[57] Graf, E.; Hosseini, M. W. Coord. Chem. Rev. 1998, 178180, 1193.

[58] Abe, A. M. M.; Helaja, J.; Koskinen, A. M. P. Org. Lett. 2006, 8, 4537.

[59] Arens, V. A.; Dietz, C.; Schollmeyer, D.; Jurkschat, K. Organometallics 2013, 32, 2775.

[60] Wendji, A. S.; Lutter, M.; Dietz, C.; Jouikov, V.; Jurkschat, K. Organometallics 2013, 32, 5720.

[61] Boda, A.; Ali, S. M.; Rao, H.; Ghosh, S. K. J. Mol. Model. 2012, 18, 3507.

文章导航

/