研究论文

双环[3.3.1]壬烷-2,6,9-三酮的合成

  • 任晓莉 ,
  • 凌亦飞 ,
  • 罗军
展开
  • 南京理工大学化工学院 南京 210094

收稿日期: 2013-09-06

  修回日期: 2013-10-22

  网络出版日期: 2013-10-25

Synthesis of Bicyclo[3.3.1]nonane-2,6,9-trione

  • Ren Xiaoli ,
  • Ling Yifei ,
  • Luo Jun
Expand
  • School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094

Received date: 2013-09-06

  Revised date: 2013-10-22

  Online published: 2013-10-25

摘要

研究了新化合物双环[3.3.1]壬烷-2,6,9-三酮以1,3-环己二酮为起始原料的三条合成路线,并对其反应机理进行了初步推测. 第一条路线以1,3-环己二酮与丙烯醛发生Michael加成、分子内aldol缩合以及氧化三步得到双环[3.3.1]壬烷-2,6,9-三酮,总产率为43%. 第二条路线为1,3-环己二酮先与吗啉反应生成烯胺,再与丙烯酸乙酯进行环合,以“一锅煮”法得到目标产物,产率为20%. 第三条路线为1,3-环己二酮先与丙烯酸乙酯经过Michael加成,再进行酸催化分子内C-酰化得到目标产物,总产率为83%,该路线具有操作简单、条件温和、产率高及环境友好等优点.

本文引用格式

任晓莉 , 凌亦飞 , 罗军 . 双环[3.3.1]壬烷-2,6,9-三酮的合成[J]. 有机化学, 2014 , 34(2) : 376 -381 . DOI: 10.6023/cjoc201309009

Abstract

A novel compound bicyclo[3.3.1]nonane-2,6,9-trione was synthesized from cyclohexane-1,3-dione through three routes and some reaction mechanisms were proposed. The first route afforded bicyclo[3.3.1]nonane-2,6,9-trione in a total yield of 43% via Michael addition with cyclohexane-1,3-dione and acrolein, intermolecular Aldol condensation and oxidation. The second route gave target product in 20% yield via a one-pot process including formation of enamine with morpholine and cyclization with acrylic ethyl ester. The third route also used cyclohexane-1,3-dione and acrylic ethyl ester as start materials and resulted bicyclo[3.3.1]nonane-2,6,9-trione with a high total yield of 83% via Michael addition and intermolecular C-acylation. This process has the advantages of simple operation, mild reaction conditions, high yield and environmental friendship.

参考文献

[1] Marvell, E. N.; Knutson, R. S.; McEwen, T.; Sturmer, D.; Federici, W.; Salisbury, K. J. Org. Chem. 1970, 35, 392.



[2] Tang, J. M.; Guo, J. W.; Liu, S. Adv. Fine Petrochem. 2003, (4), 46 (in Chinese).



(谭镜名, 郭建维, 刘卅, 精细石油化工进展, 2003, (4), 46.)



[3] Pouplin, T.; Tolon, B.; Nuhant, P.; Delpech, B.; Marazano, C. Eur. J. Org. Chem. 2007, 5117.



[4] Tori, M.; Hisazumi, K.; Wada, T.; Sono, M.; Nakashima K. Tetrahedron: Asymmetry 1999, 10, 961.



[5] Pradhan, T. K.; Hassner, A. Synlett 2007, 1071.



[6] Danishefsky, S.; Migdalof, B. H. Tetrahedron 1969, 50, 4331.



[7] Zhang, Q.; Porco, Jr. J. A. Org. Lett. 2012, 14, 1796.



[8] Mehta, G.; Bera, M. K.; Chatterjee, S. Tetrahedron Lett. 2008, 49, 1121.



[9] Mehta, G.; Das, M.; Kundu, U. K. Tetrahedron Lett. 2012, 53, 4538.



[10] Noël, R.; Vanucci-Bacqué, C.; Fargeau-Bellassoued, M.-C.; Lhommet, G. J Org Chem. 2005, 22, 9044.



[11] Ranu, B. C.; Bhar, S. Tetrahedron 1992, 48, 1327.



[12] Ranu, B. C.; Bhar, S. Sarkar, D. C. Tetrahedron Lett. 1991, 32, 2811.



[13] Filippini, M.-H.; Faure, R.; Rodriguez, J. J. Org. Chem. 1995, 60, 6872.



[14] Lyttle, M. H.; Streitwieser, A.; Miller, M. J. J. Org. Chem. 1989, 54, 2331.



[15] Hawkins, R. T.; Hsu, R. S.; Wood, S. G. J. Org. Chem. 1978, 43, 4648.



[16] Dondoni, A.; Perrone, D. Org. Synth. 2004, 10, 320.



[17] Takahashi, H.; Kajimoto, T.; Tsuji, J. Synth. Commun. 1972, 2, 181.



[18] Hu, Z. M.; Du, H. X.; Leung, C. F.; Liang, H. J.; Lau, T. C. Ind. Eng. Chem. Res. 2011, 50, 12288.



[19] Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251.



[20] Boltukhina, E. V.; Sheshenev, A. E.; Lyapkalo, I. M. Tetrahedron 2011, 67, 5382.



[21] Mitoshi, K.; Takahiko, N.; Shigeru, S.; Katsuhiro, I.; Hisao, N.; Nobuyuki, H. Synlett 1997, 1472.



[22] Zhang, Q.; Su, H.; Luo, J.; Wei, Y. Y. Green Chem. 2012, 14, 201.

文章导航

/