研究论文

新型咔唑类衍生物的合成、光谱性质及其与Ct-DNA作用的研究

  • 简勇 ,
  • 李刚 ,
  • 杨鹏 ,
  • 邓拓 ,
  • 周雪 ,
  • 徐海燕
展开
  • 基于靶点的药物设计与研究教育部重点实验室 沈阳药科大学 沈阳 110016

收稿日期: 2013-09-23

  修回日期: 2013-11-18

  网络出版日期: 2013-12-06

基金资助

国家自然科学基金(No. 21102095)、辽宁省自然科学基金(No. 201102209)、辽宁省高校杰出青年学者成长计划(No. LJQ2012090)、辽宁省首批“博士后集聚工程”(No. 2011921013)和辽宁省“大学生创新创业训练计划” (No. 201210163012)资助项目

Syntheses, Spectral Properties of Novel Carbazole Derivatives and Evaluations of Its Ct-DNA Interaction

  • Jian Yong ,
  • Li Gang ,
  • Yang Peng ,
  • Deng Tuo ,
  • Zhou Xue ,
  • Xu Haiyan
Expand
  • Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016

Received date: 2013-09-23

  Revised date: 2013-11-18

  Online published: 2013-12-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21102095), the Liaoning Provincial Natural Science Foundation (No. 201102209), the Program of Liaoning Excellent Talents in University (No. LJQ2012090), the Liaoning Provincial Postdoctoral Converging Project (No. 2011921013), and the Undergraduates Innovative Entrepreneurship Training Project of Liaoning Province (No. 201210163012).

摘要

以咔唑为原料,经CuBr·SMe2催化C—N键形成、硝化、还原以及Pd金属催化C—N键偶联等反应合成了一系列新型咔唑衍生物. 研究了它们自身在不同溶剂中的紫外吸收和荧光发射光谱以及化合物 2 的盐酸盐和Ct-DNA 相互作用的光谱行为. 结果表明,这一系列化合物具有明显的溶致变色效应,其中化合物4最为显著. Ct-DNA结合实验表明化合物2盐酸盐的荧光随着Ct-DNA的滴加而线性增强. Ct-DNA的小沟槽为该分子的主要结合位点,两者的结合能处于104 L·mol-1级别,属中等强度结合.

本文引用格式

简勇 , 李刚 , 杨鹏 , 邓拓 , 周雪 , 徐海燕 . 新型咔唑类衍生物的合成、光谱性质及其与Ct-DNA作用的研究[J]. 有机化学, 2014 , 34(4) : 809 -816 . DOI: 10.6023/cjoc201309030

Abstract

A series of carbazole derivatives were synthesized via reactions of C—N bond formation catalyzed by CuBr·SMe2, nitration, reduction as well as Pd-catalyzed C—N crossing coupling, respectively. Their UV-Vis and fluorescence spectra in different solvents were investigated, as well as the evaluation of the interaction between compound 2 hydrochloride and Ct-DNA. The results showed that all compounds exhibited distinct solvatochromism effects and among them, compound 4 was the most obvious one. Upon binding with DNA, the fluorescence of compound 2 hydrochloride turned on, instead of quenching, and the minor groove of DNA is the most possible position for the molecule to bind with. The calculated binding constant is around 104 L·mol-1, showing a moderate binding affinity.

参考文献

[1] Dalton, L. R.; Sapochak, L. S. J. Phys. Chem. 1993, 97, 2871.

[2] Galabrase, X. J.; Chem, L. T.; Green, J. G. J. Am. Chem. Soc. 1991, 113, 227.

[3] Zhou, G. Y.; Wang, D.; Wang, X. M.; Xu, X. G.; Shao, Z. S.; Zhao, X.; Jiang, M. H. Opt. Tech. 2002, 28, 372 (in Chinese).(周广勇, 王东, 王筱梅, 许心光, 邵宗书, 赵显, 方奇, 蒋民华, 光学技术, 2002, 28, 372.)

[4] Kotle, Z.; Segal, J.; Sigalov, M.; Benaasally, A.; Khodorkobsky, A. Synth. Met. 2000, 115.

[5] Han, L. Z.; Wang, Z.; Hua, Y. J.; Ren, A. M.; Liu, Y. L.; Liu, P. J. Acta Chim. Sinica 2012, 70, 579 (in Chinese).(韩立志, 王卓, 华英杰, 任爱民, 刘艳玲, 刘朋军, 化学学报, 2012, 70, 579.)

[6] Zhang, P.; Li, C.; Li, Y. W.; Tu, Y. F. J. Chin. J. Chem. 2013, 2013, 31, 1439.

[7] Nsib, F.; Ayed, N.; Chevalier, Y. Dye Pigm. 2007, 74, 133.

[8] Mishra, A. K.; Jacob, J.; MÜllen, K. Dye Pigm. 2007, 75, 1.

[9] Yoon, K. R.; Ko, S. O.; Lee, S. M.; Lee, H. S. Dye Pigm. 2007, 75, 567.

[10] Curiel, D.; Cowley, A.; Beer, P. D. Chem. Commun. 2005, 236.

[11] Yu, M.; Lin, H.; Lin, H. Supramol. Chem. 2008, 20, 357.

[12] Omura, S.; Sasaki, Y.; Iwai, Y.; Takeshima, H. J. Antibiot. 1995, 48, 535.

[13] Chen, W. J.; Zhou, C. X.;Yao, P. F.; Wang, X. X.; Tan, J. H.; Li, D.; Ou, T. M.; Gu, L. Q.; Huang, Z. S. Bioorg. Med. Chem. 2012, 20, 2829.

[14] Huang, F. C.; Chang, C. C.; Lou, P. J.; Kuo, I. C.; Chien, C. W.; Chen, C. T.; Shieh, F. Y.; Chang, T. C.; Lin, J. J. Mol. Cancer Res. 2008, 6, 955.

[15] Jia, T.; Xiang, J.; Wang, J.; Guo, P.; Yu, J. P. Org. Biomol. Chem. 2013, 11, 5512.

[16] Yang, P.; Yang, Q.; Qian, X. H. Tetrahedron 2005, 61, 11895.

[17] Monchaud, D.; Yang, P.; Lacroix, L.; Teulade-Fichou, M.-P.; Mergny, J.-L. Angew. Chem., Int. Ed. 2008, 47, 4858.

[18] House, H. O.; Chu, C. Y.; Wilkins, J. M.; Umen, M. J. Org. Chem. 1975, 40, 1460.

[19] Kato, Y.; Conn, M. M.; Rebek, Jr. J. Am. Chem. Soc. 1994, 116, 3279.

[20] Freeman, H. S.; Butler, J. R. J. Org. Chem. 1978, 26, 4975.

[21] Pasternack, R. F.; Gibbs, E. J.; Villafranca, J. J. Biochemistry 1983, 22, 2406.

[22] Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.; Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1989, 111, 3051.

[23] Dumat, B.; Bordeau, G.; Faurel-Paul, E.; Mahuteau-Betzer, F.; Saettel, N.; Bombled, M.; Metgé, G.; Charra, F.; Fiorini-Debuisschert, C.; Teulade-Fichou, M. P. Biochimie 2011, 93, 1209.

[24] Bag, S. S.; Ghorai, S.; Pradhan, M. K.; Kundu, R.; Jana, S. Bioorg. Med. Chem. Lett. 2013, 23, 96.

[25] Bag, S. S.; Ghorai, S.; Jana, S.; Mukherjee, C. RSC Adv. 2013, 3, 5374.

[26] Lepecq, J. B.; Paoletti, C. J. Mol. Biol. 1967, 27, 87.

[27] Dunlop, H. G.; Tucker, S. H. J. Chem. Soc. 1939, 1945.

[28] Benson, S. C.; Singh, P.; Glazer, A. N. Nucleic Acids Res. 1993, 21, 5727.

[29] Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991.Karstens, T.; Kobs, K. J. Phys. Chem. 1980, 84, 1871.

文章导航

/