研究论文

噻唑基温控手性离子液体催化反式肉桂醛和对甲酰基苯甲酸甲酯合成γ-丁内酯

  • 于凤丽 ,
  • 窦有涛 ,
  • 赵冬梅 ,
  • 解从霞 ,
  • 于世涛
展开
  • a. 青岛科技大学化学与分子工程学院 青岛 266042;
    b. 大连理工大学精细化工国家重点实验室 大连 116024;
    c. 青岛科技大学化工学院 青岛 266042

收稿日期: 2013-11-18

  修回日期: 2014-01-20

  网络出版日期: 2014-02-12

基金资助

国家自然科学基金(No. 21006055)和大连理工大学精细化工国家重点实验室开放课题基金(No. KF1106)资助项目.

Synthesis of γ-Butyrolactone from trans-Cinnamaldehyde and Methyl p-Formylbenzoate Catalyzed by Thermoregulated Thiazolium Chiral Ionic Liquid

  • Yu Fengli ,
  • Dou Youtao ,
  • Zhao Dongmei ,
  • Xie Congxia ,
  • Yu Shitao
Expand
  • a. College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042;
    b. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024;
    c. College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042

Received date: 2013-11-18

  Revised date: 2014-01-20

  Online published: 2014-02-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21006055) and the State Key Laboratory of Fine Chemicals (No. KF1106).

摘要

L-薄荷醇、4-甲基-5-羟乙基噻唑、多聚甲醛、环氧乙烷等为原料,设计合成出一类新型的噻唑基温控手性离子液体催化剂,并将其用于催化反式肉桂醛和对甲酰基苯甲酸甲酯的反应,立体选择性地合成了含有两个手性中心的取代γ-丁内酯. 利用催化剂的温控性能,使反应在温控溶剂中进行,可以达到温控相分离催化的效果,实现催化剂的循环使用. 选择出最佳温控溶剂为THF/正己烷(体积比为2.5:2). 以1,8-二氮杂双环[5,4,0]十一碳-7-烯(DBU)为碱试剂,在催化剂用量为反应原料的10 mol%,反应温度为35 ℃,反应时间为16 h的条件下,反式肉桂醛的转化率为95.4%,γ-丁内酯的选择性为80.4%,产物顺反比为3.3:1,其ee值分别为21.3%和16.1%. 考察了催化剂的循环使用性能,结果表明催化剂可循环使用4次,其催化活性基本保持不变.

本文引用格式

于凤丽 , 窦有涛 , 赵冬梅 , 解从霞 , 于世涛 . 噻唑基温控手性离子液体催化反式肉桂醛和对甲酰基苯甲酸甲酯合成γ-丁内酯[J]. 有机化学, 2014 , 34(6) : 1190 -1195 . DOI: 10.6023/cjoc201311031

Abstract

From L-menthol, 5-(2-hydroxyethyl)-4-methylthiazole, paraformaldehyde and epoxyethane, a novel thermoregulated thiazolium chiral ionic liquid was synthesized and used for catalyzing the reaction of trans-cinnamaldehyde with methyl p-formylbenzoate to stereoselectively synthesize γ-butyrolactones with two chiral centres. By using the thermoregulation of the catalyst, the catalytic reaction in the thermoregulated solvent had the feature of "Thermoregulated Phase-separable Catalysis", and the recycling of the ionic liquid catalyst was easily achieved. THF/n-hexane (V:V=2.5:2) mixed solvent was selected as the thermoregulated solvent. Under the conditions of 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) as the alkaline reagent, the quantity of catalyst 10 mol%, the reaction temperature 35 ℃, and the reaction time 16 h, the conversion of trans-cinnamaldehyde could reach 95.4%, and the selectivity of γ-butyrolactones was 80.4%. The ratio of cis/trans product was 3.3, and the ee values of cis-product and trans-product were 21.3% and 16.1%, respectively. The recycling efficiency of the ionic liquid catalyst was investigated. During the recycles of 4 times, the catalytic activity of the ionic liquid was nearly unchanged.

参考文献

[1] He, J.; Ji, R. Y. Spice Introduction, China Petrochemical Press, Beijing, 1993, pp. 5~6 (in Chinese).
(何坚, 季儒英, 香料概论, 中国石化出版社, 北京, 1993, pp. 5~6.)
[2] Fan, Y. C. Spice and Application, Chemical Industry Press, Beijing, 1990, pp. 2~3 (in Chinese).
(范有成, 香料及其应用, 北京化学工业出版社, 北京, 1990, pp. 2~3.)
[3] Rodriguez, A. D.; Pina, I. C.; Barness C. L. J. Org. Chem. 1995, 60, 8096.
[4] Trost, B. M.; Tang, W.; Schulte, J. Org. Lett. 2000, 2, 4013.
[5] Pour, M.; Spulak, M.; Buchta, V.; Kubanova, P.; Voprsalova, M.; Wsol, V.; Fakova, H.; Koudelka, P.; Pourova, H.; Schiller, R. J. Med. Chem. 2001, 44, 2701.
[6] Peterson, E. M.; Xu, K.; Holland, K. D.; Mckeon, A. C.; Rothman, S. M.; Ferrendelli, J. A.; Covey, D. F. J. Med. Chem. 1994, 37, 275.
[7] Oeveren, Van A.; Jansen, J. F. G. A.; Feringa, B. L. J. Org. Chem. 1994, 59, 5999.
[8] Seitz, M.; Reiser, O. Curr. Opin. Chem. Biol. 2005, 9, 285.
[9] Forzato, C.; Gandolfi, R.; Molinari, F.; Nitti, P.; Pitaccoa, G.; Valentina, E. Tetrahedron: Asymmetry 2001, 12, 1039.
[10] Li, Y.; Zhao, Z. A.; He, H.; You, S. L. Adv. Synth. Catal. 2008, 350, 1885.
[11] Enders, D.; Kroll, M.; Raabe, G.; Runsink, J. Angew. Chem., Int. Ed. 1998, 37, 1673.
[12] Whisler, M. C.; Vaillancourt, L.; Beak, P. Org. Lett. 2000, 2, 2655.
[13] Kise, N.; Hirata, Y.; Harnaguchi, T.; Ueda, N. Tetrahedron Lett. 1999, 40, 8125.
[14] Pippel, D. J.; Curtis, M. D.; Du, H.; Beak, P. J. Org. Chem. 1998, 63, 2.
[15] Greaves, T. L.; Drummond, C. J. Chem. Rev. 2008, 108, 206.
[16] Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A. C.; Plaquevent, J. C. Tetrahedron: Asymmetry 2003, 14, 3081.
[17] Zhao, D. B.; Wu, M.; Kou, Y.; Min, E. Z. Catal. Today 2002, 74, 157.
[18] Yu, F. L.; Zhang, R. L.; Xie, C. X.; Yu, S. T. Green Chem. 2010, 12, 1196.
[19] Yu, F. L.; Zhang, R. L.; Xie, C. X.; Yu, S. T. Tetrahedron 2010, 66, 9145.
[20] Jiang, J. J. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.) 2011, 32, 569 (in Chinese).
(蒋佳佳, 青岛科技大学学报(自然科学版), 2011, 32, 569.)
[21] Yu, F. L.; Jiang, J. J.; Zhao, D. M.; Xie, C. X.; Yu, S. T. RSC Adv. 2013, 3, 3996.
[22] Pernak, J.; Feder-Kubis, J. Chem. Eur. J. 2005, 11, 4441.
[23] Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
文章导航

/