研究论文

缩醛与吲哚或苯并呋喃的烷基化反应

  • 刘宁宁 ,
  • 杨玲 ,
  • 杨蓓 ,
  • 王金棒 ,
  • 陈雪 ,
  • 武钦佩
展开
  • 北京理工大学化工与环境学院 北京 100081

收稿日期: 2014-06-23

  修回日期: 2014-08-10

  网络出版日期: 2014-08-26

基金资助

国家自然科学基金(No.21172019)资助项目.

Alkylation of Indole and Benzofuran with Acetals

  • Liu Ningning ,
  • Yang Ling ,
  • Yang Bei ,
  • Wang Jinbang ,
  • Chen Xue ,
  • Wu Qinpei
Expand
  • School of Chemical Engineering and Environments, Beijing Institute of Technology, Beijing 100081

Received date: 2014-06-23

  Revised date: 2014-08-10

  Online published: 2014-08-26

Supported by

Project supported by the National Natural Science Foundation of China (No. 21172019).

摘要

苯并呋喃衍生物和吲哚衍生物广泛存在于天然产物中, 普遍具有生物活性. 缩醛是被频繁使用的羰基保护基团. 在TMSOTf和三甲基吡啶作用下, 芳香基和烷基缩醛都可以直接与苯并呋喃或者吲哚发生烷基化反应; 缩醛的两个烷氧基被苯并呋喃或者吲哚取代生成双苯并呋喃或双吲哚甲烷衍生物, 与苯并呋喃相比, 吲哚烷基化反应的得率较高. 环状缩醛、含有氨基的缩醛和丙酮缩二甲醇也可以直接发生烷基化反应, 反应条件温和. 缩醛的一个烷氧基被吲哚取代的产物及其被转化为双取代产物的实验结果为反应机理提供了证据.

本文引用格式

刘宁宁 , 杨玲 , 杨蓓 , 王金棒 , 陈雪 , 武钦佩 . 缩醛与吲哚或苯并呋喃的烷基化反应[J]. 有机化学, 2014 , 34(12) : 2523 -2528 . DOI: 10.6023/cjoc201401038

Abstract

Benzofuran derivatives and bisindolylmethane derivatives are widely present in natural products, and have significant biological activity. Acetals were demonstrated to be efficient alkylating agents in the presence of TMSOTf and 2,4,6-collidine. Bisbenzofuranmethane and bisindolylmethane derivatives were easily obtained via direct alkylation of benzofurnan or indole with a series of acetals including amino, cyclic, acetone, aryl and alkyl acetals. The reaction mechanism was proposed.

参考文献

[1] (a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Chem. Rev. 2010, 110, 2250. (b) Abe, T.; Nakamura, S.; Yanada, R.; Choshi, T.; Hibino, S.; Ishikura, M. Org. Lett. 2013, 15, 3622. (c) Pang, Y. Y.; Xu, Z. L. Chin. J. Org. Chem. 2005, 25, 25 (in Chinese). (庞翼燕, 许遵乐, 有机化学, 2005, 25, 25.) (d) Pathak, T. P.; Osiak, J. G.; Vaden, R. M.; Welm, B. E.; Sigman, M. S. Tetrahedron 2012, 68, 5203. (e) Gao, X.; Gong, H. J.; Men, P.; Zhou, L.; Ye, D. Y. Chin. J. Chem. 2013, 31, 1164. (f) Zhang, J.; Da, Sh. J.; Feng, X. L.; Chen, X. Y. Chin. J. Chem. 2013, 31, 123. (g) Fang, H. B.; Jin, L.; Huang, N. Y.; Wang, J. Zh.; Zou, K.; Luo, Z. G. Chin. J. Chem. 2013, 31, 831.
[2] Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer Lett. 2008, 269, 326.
[3] (a) Wang, J. R.; Tsai, C. H.; Kulp, S. K.; Chen, C. S. Cancer Lett. 2008, 262, 153. (b) Hall, J. M.; Barhoover, M. A.; Kazmin, D.; McDonnell, D. P.; Greenlee, W. F.; Thomas, R. S. Mol. Endocrinol. 2010, 24, 359. (c) Garikapaty, V. P. S.; Ashok, B. T.; Tadi, K.; Mittelman, A.; Tiwari, R. K. Biochem. Biophys. Res. Commun. 2006, 340, 718.
[4] Bell, R.; Carmeli, S.; Sar, N. J. Nat. Prod. 1994, 57, 1587.
[5] Peng, Y. Y.; Zhang, Q. L.; Yuan, J. J.; Cheng, J. P. Chin. J. Chem. 2008, 26, 2228.
[6] An, L. T.; Ding, F. Q.; Zou, J. P.; Lu, X. H.; Zhang, L. L. Chin. J. Chem. 2007, 25, 822.
[7] He, F.; Li, P.; Gu, Y.; Li, G. Green Chem. 2009, 11, 1767.
[8] Mendes, S. R.; Thurow, S.; Fortes, M. P.; Penteado, F.; Lenardão, E. J.; Alves, D.; Perin, G.; Jacob, R. G. Tetrahedron Lett. 2012, 53, 5402.
[9] Khaksar, S.; Talesh, S. M. J. Fluorine Chem. 2012, 135, 87.
[10] Azizi, N.; Torkian, L.; Saidi, M. R. J. Mol. Catal. A: Chem. 2007, 275, 109.
[11] Zhang, Z.-H.; Yin, L.; Wang, Y.-M. Synthesis 2005, 1949.
[12] Mulla, S. A. R.; Sudalai, A.; Pathan, M. Y.; Siddique, S. A.; Inamdar, S. M.; Chavan, S. S.; Reddy, R. S. RSC Adv. 2012, 2, 3525.
[13] Mo, L. P.; Ma, Z. C.; Zhang, Z. H. Synth. Commun. 2005, 35, 1997.
[14] (a) Ji, S. J.; Zhou, M. F.; Gu, D. G.; Wang, S. Y.; Loh, T. P. Synlett 2003, 2077. (b) Armstrong, E. L.; Grover, H. K.; Kerr, M. A. J. Org. Chem. 2013, 78, 10534.
[15] Lin, H.; Zang, Y.; Sun, X.; Lin, G. Chin. J. Chem. 2012, 30, 2309.
[16] Chen, R. E.; Wang, Y. L.; Chen, Z. W.; Su, W. K. Can. J. Chem. 2008, 86, 875.
[17] (a) Fujioka, H.; Minamitsuji, Y.; Moriya, T.; Okamoto, K.; Kubo, O.; Matsushita, T.; Murai, K. Chem. Asian J. 2012, 7, 1925. (b) Du, T. J.; Wu, Q. P.; Liu, H. X.; Chen, X.; Shu, Y. N.; Xi, X. D.; Zhang, Q. S.; Li, Y. Z. Tetrahedron 2011, 67, 1096. (c) Huang, L.; Yang, H. B.; Zhang, D. H.; Zhang, Z.; Tang, X. Y.; Xu, Q.; Shi, M. Angew. Chem., Int. Ed. 2013, 52, 6767. (d) Wu, Q.; Xi, X.; Chen, X.; Li, H.; Zhang, Q.; Li, Y. Chin. J. Chem. 2009, 27, 1962.
[18] (a) Fujioka, H.; Okitsu, T.; Ohnaka, T.; Li, R.; Kubo, O.; Okamoto, K.; Sawama, Y.; Kita, Y. J. Org. Chem. 2007, 72, 7898. (b) Fujioka, H.; Okitsu, T.; Sawama, Y.; Murata, N.; Li, R.; Kita, Y. J. Am. Chem. Soc. 2006, 128, 5930. (c) Maegawa, T.; Fujioka, H. J. Synth. Org. Chem. Jpn. 2013, 71, 694.
[19] Chen, R. E.; Wang, Y. L.; Chen, Z. W.; Su, W. K. Can. J. Chem. 2008, 86, 875.
[20] Ganguly, N. C.; Mondal, P.; Barik, S. K. Green Chem. Lett. Rev. 2011, 5, 73.
[21] Yang, Y. L.; Xie, Z. F.; Wang, J. D. Chin. J. Chem. 2011, 29, 2091.
[22] Nadkarni, S. V.; Nagarkar, J. M. Green Chem. Lett. Rev. 2011, 4, 121.

文章导航

/