研究论文

铁催化2-烯基氮杂芳烃的绿色合成

  • 刘森生 ,
  • 姜坤 ,
  • 皮单违 ,
  • 周海峰 ,
  • Yasuhiro Uozumi ,
  • 邹坤
展开
  • a 三峡大学生物与制药学院 天然产物研究与利用湖北省重点实验室 宜昌 443002;
    b 分子科学研究所 冈崎市 日本 444-8787

收稿日期: 2014-02-05

  修回日期: 2014-03-22

  网络出版日期: 2014-04-02

基金资助

国家自然科学青年基金(No.21202092)和三峡大学人才科研启动基金(No.KJ2012B080)资助项目

Iron-Catalyzed Green Synthesis of 2-Alkenylazaarenes

  • Liu Sensheng ,
  • Jiang Kun ,
  • Pi Danwei ,
  • Zhou Haifeng ,
  • Uozumi Yasuhiro ,
  • Zou Kun
Expand
  • a Hubei Key Laboratory of Natural Products Research & Development, College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002;
    b Institute for Molecular Science, Okazaki, Japan 444-8787

Received date: 2014-02-05

  Revised date: 2014-03-22

  Online published: 2014-04-02

Supported by

Project supported by the National Natural Science Foundation of China (No. 21202092) and the Startup Foundation from China Three Gorges University (No. KJ2012B080).

摘要

以廉价、低毒的醋酸亚铁为催化剂,在三氟乙酸助催化下,2-甲基氮杂芳烃与芳香醛经过加成与脱水反应,直接选择性合成具有生物活性的反式2-烯基氮杂芳烃化合物,水是唯一副产物. 该合成方法催化剂用量少,后处理方便,产率高,选择性高,底物适用范围广. 治疗哮喘药顺尔丁中间体(E)-3-[2-(7-氯-2-喹啉基)乙烯基]苯甲醛(3v)的克级合成展现了该方法的应用前景.

本文引用格式

刘森生 , 姜坤 , 皮单违 , 周海峰 , Yasuhiro Uozumi , 邹坤 . 铁催化2-烯基氮杂芳烃的绿色合成[J]. 有机化学, 2014 , 34(7) : 1369 -1375 . DOI: 10.6023/cjoc201402005

Abstract

A straightforward and selective synthesis of bioactive trans-2-alkenylazaarenes has been achieved via cheap and nontoxic iron(II) acetate catalyzed addition and dehydration reactions of 2-methylazaarenes and aromatic aldehydes in the presence of catalytic amount of trifluoroacetic acid with water as the only byproduct. The low catalyst loading, convenience, good yield, high selectivity, as well as the broad substrate scope make this protocol very practical. The practical potential was also demonstrated by gram-scale synthesis of (E)-3-[2-(7-chloro-2-quinolinyl)ethenyl]benzaldehyde (3v), an intermediate of Singulair.

参考文献

[1] (a) Zamboni, R.; Belley, M.; Champion, E.; Charette, L.; Dehaven, R.; Frenette, R.; Gauthier, J. Y.; Jones, T. R.; Leger, S.; Masson, P. C.; McFarlane, S.; Metters, K.; Pong, S. S.; Piechuta, H.; Rokach, J.; Thérien, M.; Williams, H. W. R.; Young, R. N. J. Med. Chem. 1992, 35, 3832.

(b) Mekouar, K.; Mouscadet, J. F.; Desmaële, D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d'Angelo, J. J. Med. Chem. 1998, 41, 2846.

(c) Fournet, A.; Mahieux, R.; Fakhfakh, M. A.; Franck, X.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. Lett. 2003, 13, 891.

(d) Fakhfakh, M. A.; Fournet, A.; Prina, E.; Mouscadet, J. F.; Franck, X.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. 2003, 11, 5013.

(e) Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. Lett. 2004, 14, 3635.

(f) Nakayama, H.; Loiseau, P. M.; Bories, C.; Torres de Ortiz, S.; Schinini, A.; Serna, E.; Rojas de Arias, A.; Fakhfakh, M. A.; Franck, X.; Figadère, B.; Hocquemiller, R.; Fournet, A. Antimicrob. Agents Chemother. 2005, 49, 4950.

(g) Chang, F. S.; Chen, W. C.; Wang, C. H.; Tzeng, C. C.; Chen, Y. L. Bioorg. Med. Chem. 2010, 18, 124.

[2] (a) Buffat, M. G. P. Tetrahedron 2004, 60, 1701.

(b) Felpin, F. X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.

(c) Carey, J. S.; Laffan, L.; Thompson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337.

(d) Dugger, R. W.; Ragan, J. A.; Ripin, D. H. B. Org. Process Res. Dev. 2005, 9, 253.

(e) Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fourasté, I.; Moulis, C. Phytochemistry 1999, 51, 1167.

(f) Houghton, P. J.; Woldemariam, T. Z.; Watanabe, Y.; Yates, M. Planta Med. 1999, 65, 250.

[3] (a) Kalsow, C. E.; Stayner, R. D. J. Am. Chem. Soc. 1945, 67, 1716.

(b) Compton, C.; Bergmann, W. J. Org. Chem. 1947, 12, 363.

[4] (a) Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.

(b) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.

(c) Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720.

(d) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872.

(e) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448.

[5] Anastas P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686.

[6] For reviews:

(a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.

(b) Correa, A.; García Mancheno, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108.

(c) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317.

(d) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500.

(e) Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 1364.

(f) Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010, 75, 6061.

(g) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586.

(h) Sun, C.-L.; Li, B.-J.; Zhang, Z.-J. Chem. Rev. 2011, 111, 1293.

(i) Song, Y.; Tang, X.; Hou, X.; Bai, Y. Chin. J. Org. Chem. 2013, 33, 76.

(j) Ji, D.; Su, L.; Zhao, K.; Wang, B.; Hu, P.; Feng, C.; Xiang, S.; Yang, H.; Zhang, C. Chin. J. Chem. 2013, 31, 1045.

[7] Qian, B.; Xie, P.; Xie, Y.; Huang, H. Org. Lett. 2011, 13, 2580.

[8] Yan, Y.; Xu, K.; Fang, Y.; Wang, Z. J. Org. Chem. 2011, 76, 6849.

文章导航

/