综述与进展

石墨烯及其复合材料在催化有机反应中的研究新进展

  • 张丽 ,
  • 高书涛 ,
  • 刘伟华 ,
  • 唐然肖 ,
  • 商宁昭 ,
  • 王春 ,
  • 王志
展开
  • 河北农业大学理学院 保定 071001

收稿日期: 2014-03-01

  修回日期: 2014-04-05

  网络出版日期: 2014-04-16

基金资助

河北省自然科学基金(No.B2011204051)和河北省高等学校创新团队领军人才培育计划(No.LJRC009)资助项目.

Research Progress of Graphene and Its Composites in Organic Synthesis

  • Zhang Li ,
  • Gao Shutao ,
  • Liu Weihua ,
  • Tang Ranxiao ,
  • Shang Ningzhao ,
  • Wang Chun ,
  • Wang Zhi
Expand
  • College of Science, Agricultural University of Hebei, Baoding 071001

Received date: 2014-03-01

  Revised date: 2014-04-05

  Online published: 2014-04-16

Supported by

Project supported by the Natural Science Foundation of Hebei Province (No. B2011204051) and the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities (No. LJRC009).

摘要

石墨烯作为一种新型碳纳米材料,由于其具有大的比表面积、良好的热稳定性和化学稳定性、易于进行化学修饰等优点,基于石墨烯及其复合材料的催化体系得到了广泛的关注. 目前石墨烯及其复合材料已经成功地应用于催化Suzuki-Miyaura,Heck,硝基还原,氨硼烷水解脱氢等一系列有机反应. 对近年来石墨烯及其复合材料催化的有机反应的最新研究进展进行简要评述.

本文引用格式

张丽 , 高书涛 , 刘伟华 , 唐然肖 , 商宁昭 , 王春 , 王志 . 石墨烯及其复合材料在催化有机反应中的研究新进展[J]. 有机化学, 2014 , 34(8) : 1542 -1548 . DOI: 10.6023/cjoc201403001

Abstract

As a novel carbon nanomaterial, graphene based composite has received much attention in catalysis due to its unique characterisics such as large surface area, good thermal and chemical stability, strong hydrophobicity, easy modification, etc. Graphene and its composites have been applied in the catalysis of different organic reactions, such as Suzuki-Miyaura, Heck, and reduction of nitroarenes. The research progress of graphene-based composites catalyst is briefly reviewed in the paper.

参考文献

[1] (a) Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K. Nat. Mater. 2007, 6, 652.

(b) Brumfiel, G. Nature 2009, 458, 390.

(c) Sykes, E. C. H. Nat. Chem. 2009, 1, 175.

(d) Zhang, Y.-Q.; Liang, Y.-M.; Zhou, J.-X. Acta Chim. Sinica 2014, 72, 367 (in Chinese).

(张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)

(e) Lin, Y.-W.; Guo, X.-F. Acta Chim. Sinica 2014, 72, 277 (in Chinese).

(林源为, 郭雪峰, 化学学报, 2014, 72, 277.)

[2] Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262.

[3] Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Nano Res. 2010, 3, 429.

[4] Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Mater. Res. Bull. 2010, 45, 1413.

[5] Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J. Catal. 2011, 279, 1.

[6] He, Y. Q.; Zhang, N. N.; Liu, Y.; Gao, J. P.; Yi, M. C.; Gong, Q. J.; Qiu, H. X. Chin. Chem. Lett. 2012, 23, 41.

[7] Shendage, S. S.; Singh, A. S.; Nagarkar, J. M. Tetrahedron Lett. 2013, 54, 3457.

[8] Kim, S. H.; Jeong, G. H.; Choi, D.; Yoon, S.; Jeon, H. B.; Lee, S. M.; Kim, S. W. J. Colloid Interface Sci. 2013, 389, 85.

[9] Hu, J.; Wang, Y.; Han, M.; Zhou, Y.; Jiang, X.; Sun, P. Catal. Sci. Technol. 2012, 2, 2332.

[10] Shendage, S. S.; Patil, U. B.; Nagarkar, J. M. Tetrahedron Lett. 2013, 54, 3457.

[11] Shang, N.-Z.; Feng, C.; Zhang, H.; Gao, S.-T.; Tang, R.; Wang, C.; Wang, Z. Catal. Commun. 2013, 40, 111.

[12] Lee, K. H.; Han, S. W.; Kwon, K. Y.; Park, J. B. J. Colloid Inerface Sci. 2013, 403, 127.

[13] Yousef, A.; Barakat, N. A.; El-Newehy, M.; Kim, H. Y. Int. J. Hydrogen Energy 2012, 37, 17715

[14] Kilic, B.; ?encanl?, S.; Metin, Ö. J. Mol. Catal. A: Chem. 2012, 361362, 104.

[15] Metin, Ö.; Kayhan, E.; Özkar, S.; Schneider, J. J. Int. J. Hydrogen Energy 2012, 37, 8161.

[16] Yang, L.; Cao, N.; Du, C.; Dai, H.; Hu, K.; Luo, W.; Cheng, G. Mater. Lett. 2014, 115, 113.

[17] Cao, N.; Su, J.; Luo, W.; Cheng, G. Catal. Commun. 2014, 43, 47.

[18] Li, J.; Liu, C.-Y.; Liu, Y. J. Mater. Chem. 2012, 22, 8426.

[19] Qu, J-C.; Ren, C.-L.; Dong, Y.-L.; Chang, Y.-P.; Zhou, M.; Chen, X.-G. Chem. Eng. J. 2012, 211212, 412.

[20] Gupta, V. K.; Atar, N.; Yola, M. L.; Ustundag, Z.; Uzun, L. Water Res. 2014, 48, 210.

[21] Nie, R.-F.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Carbon 2012, 50, 586.

[22] He, G.-Y.; Liu, W.-F.; Sun, X.-Q.; Chen, Q.; Wang, X.; Chen, H.-Q. Mater. Res. Bull. 2013, 48, 1885.

[23] Feng, C.; Zhang, H.-Y.; Shang, N.-Z.; Gao, S.-T.; Wang, C. Chin. Chem. Lett. 2013, 24, 539.

[24] Bian, J.; Wei, X.-W.; Wang, L.; Guan, Z. P. Chin. Chem. Lett. 2011, 22, 57.

[25] (a) Ge, Q.; Jenkins, S.; King, D. Chem. Phys. Lett. 2000, 327, 125.

(b) Kadossov, E.; Burghaus, U. Catal. Lett. 2010, 134, 228.

(c) Wang, H.; Liu, C.-J. Appl. Catal., B 2011, 106, 672.

[26] Li, Y.; Yu, Y.; Wang, J-G.; Song, J.; Li, Q.; Dong, M.; Liu, C.-J. Appl. Catal., B 2012, 125, 189.

[27] Zhang, C.; Lv, W.; Yang, Q.; Liu, Y. Appl. Surf. Sci. 2012, 258, 7795.

[28] Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Chem. Commun. 2011, 47, 2432.

[29] Garg, B.; Bisht, T.; Chauhan, S. M. S. J. Inclusion Phenom. Mol. Recognit. Chem. 2011, 70, 249.

[30] Gale, P. A. Acc. Chem. Res. 2011, 44, 216.

[31] Gale, P. A.; Tong, C. C.; Haynes, C. J.; Adeosun, O.; Gross, D. E.; Karnas, E.; Sedenberg, E. M.; Quesada, R.; Sessler, J. L. J. Am. Chem. Soc. 2010, 132, 3240.

[32]Chauhan, S. M. S.; Mishra, S. Molecules 2011, 16, 7256.

[33] Jia, H. P.; Dreyer, D. R.; Bielawski, C. W. Adv. Synth. Catal. 2011, 353, 528.

[34] Mirza-Aghayan, M.; Boukherroub, R.; Nemati, M.; Rahimifard, M. Tetrahedron Lett. 2012, 53, 2473.

[35] Yu, H.; Wang, X.; Zhu, Y.; Zhuang, G.; Zhong, X.; Wang, J.-G. Chem. Phys. Lett. 2013, 583, 146.

文章导航

/