石墨烯及其复合材料在催化有机反应中的研究新进展
收稿日期: 2014-03-01
修回日期: 2014-04-05
网络出版日期: 2014-04-16
基金资助
河北省自然科学基金(No.B2011204051)和河北省高等学校创新团队领军人才培育计划(No.LJRC009)资助项目.
Research Progress of Graphene and Its Composites in Organic Synthesis
Received date: 2014-03-01
Revised date: 2014-04-05
Online published: 2014-04-16
Supported by
Project supported by the Natural Science Foundation of Hebei Province (No. B2011204051) and the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities (No. LJRC009).
张丽 , 高书涛 , 刘伟华 , 唐然肖 , 商宁昭 , 王春 , 王志 . 石墨烯及其复合材料在催化有机反应中的研究新进展[J]. 有机化学, 2014 , 34(8) : 1542 -1548 . DOI: 10.6023/cjoc201403001
As a novel carbon nanomaterial, graphene based composite has received much attention in catalysis due to its unique characterisics such as large surface area, good thermal and chemical stability, strong hydrophobicity, easy modification, etc. Graphene and its composites have been applied in the catalysis of different organic reactions, such as Suzuki-Miyaura, Heck, and reduction of nitroarenes. The research progress of graphene-based composites catalyst is briefly reviewed in the paper.
Key words: graphene; organic synthesis; catalysis; review
[1] (a) Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K. Nat. Mater. 2007, 6, 652.
(b) Brumfiel, G. Nature 2009, 458, 390.
(c) Sykes, E. C. H. Nat. Chem. 2009, 1, 175.
(d) Zhang, Y.-Q.; Liang, Y.-M.; Zhou, J.-X. Acta Chim. Sinica 2014, 72, 367 (in Chinese).
(张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)
(e) Lin, Y.-W.; Guo, X.-F. Acta Chim. Sinica 2014, 72, 277 (in Chinese).
(林源为, 郭雪峰, 化学学报, 2014, 72, 277.)
[2] Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262.
[3] Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Nano Res. 2010, 3, 429.
[4] Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Mater. Res. Bull. 2010, 45, 1413.
[5] Siamaki, A. R.; Khder, A. E. R. S.; Abdelsayed, V.; El-Shall, M. S.; Gupton, B. F. J. Catal. 2011, 279, 1.
[6] He, Y. Q.; Zhang, N. N.; Liu, Y.; Gao, J. P.; Yi, M. C.; Gong, Q. J.; Qiu, H. X. Chin. Chem. Lett. 2012, 23, 41.
[7] Shendage, S. S.; Singh, A. S.; Nagarkar, J. M. Tetrahedron Lett. 2013, 54, 3457.
[8] Kim, S. H.; Jeong, G. H.; Choi, D.; Yoon, S.; Jeon, H. B.; Lee, S. M.; Kim, S. W. J. Colloid Interface Sci. 2013, 389, 85.
[9] Hu, J.; Wang, Y.; Han, M.; Zhou, Y.; Jiang, X.; Sun, P. Catal. Sci. Technol. 2012, 2, 2332.
[10] Shendage, S. S.; Patil, U. B.; Nagarkar, J. M. Tetrahedron Lett. 2013, 54, 3457.
[11] Shang, N.-Z.; Feng, C.; Zhang, H.; Gao, S.-T.; Tang, R.; Wang, C.; Wang, Z. Catal. Commun. 2013, 40, 111.
[12] Lee, K. H.; Han, S. W.; Kwon, K. Y.; Park, J. B. J. Colloid Inerface Sci. 2013, 403, 127.
[13] Yousef, A.; Barakat, N. A.; El-Newehy, M.; Kim, H. Y. Int. J. Hydrogen Energy 2012, 37, 17715
[14] Kilic, B.; ?encanl?, S.; Metin, Ö. J. Mol. Catal. A: Chem. 2012, 361~362, 104.
[15] Metin, Ö.; Kayhan, E.; Özkar, S.; Schneider, J. J. Int. J. Hydrogen Energy 2012, 37, 8161.
[16] Yang, L.; Cao, N.; Du, C.; Dai, H.; Hu, K.; Luo, W.; Cheng, G. Mater. Lett. 2014, 115, 113.
[17] Cao, N.; Su, J.; Luo, W.; Cheng, G. Catal. Commun. 2014, 43, 47.
[18] Li, J.; Liu, C.-Y.; Liu, Y. J. Mater. Chem. 2012, 22, 8426.
[19] Qu, J-C.; Ren, C.-L.; Dong, Y.-L.; Chang, Y.-P.; Zhou, M.; Chen, X.-G. Chem. Eng. J. 2012, 211~212, 412.
[20] Gupta, V. K.; Atar, N.; Yola, M. L.; Ustundag, Z.; Uzun, L. Water Res. 2014, 48, 210.
[21] Nie, R.-F.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Carbon 2012, 50, 586.
[22] He, G.-Y.; Liu, W.-F.; Sun, X.-Q.; Chen, Q.; Wang, X.; Chen, H.-Q. Mater. Res. Bull. 2013, 48, 1885.
[23] Feng, C.; Zhang, H.-Y.; Shang, N.-Z.; Gao, S.-T.; Wang, C. Chin. Chem. Lett. 2013, 24, 539.
[24] Bian, J.; Wei, X.-W.; Wang, L.; Guan, Z. P. Chin. Chem. Lett. 2011, 22, 57.
[25] (a) Ge, Q.; Jenkins, S.; King, D. Chem. Phys. Lett. 2000, 327, 125.
(b) Kadossov, E.; Burghaus, U. Catal. Lett. 2010, 134, 228.
(c) Wang, H.; Liu, C.-J. Appl. Catal., B 2011, 106, 672.
[26] Li, Y.; Yu, Y.; Wang, J-G.; Song, J.; Li, Q.; Dong, M.; Liu, C.-J. Appl. Catal., B 2012, 125, 189.
[27] Zhang, C.; Lv, W.; Yang, Q.; Liu, Y. Appl. Surf. Sci. 2012, 258, 7795.
[28] Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Chem. Commun. 2011, 47, 2432.
[29] Garg, B.; Bisht, T.; Chauhan, S. M. S. J. Inclusion Phenom. Mol. Recognit. Chem. 2011, 70, 249.
[30] Gale, P. A. Acc. Chem. Res. 2011, 44, 216.
[31] Gale, P. A.; Tong, C. C.; Haynes, C. J.; Adeosun, O.; Gross, D. E.; Karnas, E.; Sedenberg, E. M.; Quesada, R.; Sessler, J. L. J. Am. Chem. Soc. 2010, 132, 3240.
[32]Chauhan, S. M. S.; Mishra, S. Molecules 2011, 16, 7256.
[33] Jia, H. P.; Dreyer, D. R.; Bielawski, C. W. Adv. Synth. Catal. 2011, 353, 528.
[34] Mirza-Aghayan, M.; Boukherroub, R.; Nemati, M.; Rahimifard, M. Tetrahedron Lett. 2012, 53, 2473.
[35] Yu, H.; Wang, X.; Zhu, Y.; Zhuang, G.; Zhong, X.; Wang, J.-G. Chem. Phys. Lett. 2013, 583, 146.
/
〈 |
|
〉 |