Lycogarubin C和Lycogalic Acid A的全合成
收稿日期: 2014-03-11
修回日期: 2014-04-08
网络出版日期: 2014-04-16
基金资助
国家自然科学基金(Nos. 21072083和 21272104)、教育部博士点基金(No. 20110211110009)、中央高校基本科研业务费专项资金(No. lzujbky-2012-56)资助项目.
Total Synthesis of Lycogarubin C and Lycogalic Acid A
Received date: 2014-03-11
Revised date: 2014-04-08
Online published: 2014-04-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21072083, 21272104), the Research Fund for the Doctoral Program of Higher Education of China (No. 20110211110009) and the Fundamental Research Funds for the Central Universities (No. lzujbky-2012-56).
Lycogarubin C和Lycogalic acid A是用于研究DNA拓扑异构酶I(Topo I)抑制剂的重要海洋天然产物. 我们以叔丁基二甲硅基(TBS)保护的3-丁炔-1醇为起始原料,以二甲基 1,2,4,5-四嗪-3,6-二羧酸酯与炔的杂/逆Diels-Alder反应为关键反应,经1,2-二嗪还原,Swern氧化,Fischer吲哚合成等八步反应实现了Lycogarubin C的全合成,再将Lycogarubin C以氢氧化钾处理得到Lycogalic acid A.
周妮妮 , 史倩 , 谢志翔 . Lycogarubin C和Lycogalic Acid A的全合成[J]. 有机化学, 2014 , 34(6) : 1104 -1109 . DOI: 10.6023/cjoc201403025
Lycogarubin C and lycogalic acid A are key marine natural products which are used in studies on inhibitor of DNA Topoisomerase-I. With (but-3-ynyloxy)(tert-butyl)dimethylsilane as starting material, lycogarubin C was prepared in the process with 8 steps, via hetero-/retro-Diels-Alder reaction, reduction of 1,2-diazine, Swern oxidation, and Fischer indole synthesis as the key reactions, and lycogalic acid A was also obtained in the reaction of lycogarubin C with potassium hydroxide.
[1] Sanchez, C.; Mendez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 1007.
[2] Ryan, K. S.; Drennan, C. L. Chem. Biol. 2009, 16, 351.
[3] Zhang, W. J.; Liu, Z.; Li, S. M.; Yang, T. T.; Zhang, Q B.; Ma, L.; Tian, X. P.; Zhang, H. B.; Huang, C. G.; Zhang, S.; Ju, J. H.; Shen, Y. M.; Zhang, C. S. Org. Lett. 2012, 14, 3364.
[4] McArthur, K. A.; Mitchell, S. S.; Tsueng, G.; Rheingold, A.; White, D. J.; Grodberg, J.; Lam, K. S.; Potts, B. C. J. Nat. Prod. 2008, 71, 1732.
[5] (a) Frode, R.; Hinze, C.; Josten, I.; Schmidt, B.; Steffan, B.; Steglich, W. Tetrahedron Lett. 1994, 35, 1689.
(b) Hashimoto, T.; Yasuda, A.; Akazawa, K.; Takaoka, S.; Tori, M.; Akazawa, Y. Tetrahedron Lett. 1994, 35, 2559.
[6] Knolker, H-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
[7] Nishizawa, T.; Gruschow, S.; Jayamaha, D.-H. E.; Nishizawa-Haraha, C.; Sherman, D. H. J. Am. Chem. Soc. 2006, 128, 724.
[8] a) Fürstner, A.; Krause, H.; Thiel, O. R. Tetrahedron 2002, 58, 6373.
(b) Hinze, C.; Kreipl, A.; Terpin, A.; Steglich, W. Synthesis 2007, 4, 608.
(c) Fu, L. F.; Gribble, G. W. Tetrahedron Lett. 2010, 51, 537.
(d) Oakdale, J. S.; Boger, D. L. Org. Lett. 2010, 12, 1132.
(e) Chen, W.; Hao, H. L.; Zhang, C. L; Shen, Y. M. Chin. J. Org. Chem. 2014, 34, 797 (in Chinese).
(陈旺, 郝慧琳, 张晨露, 沈月毛, 有机化学, 2014, 34, 797.)
[9] Kawasaki, Y.; Ishikawa, Y.; Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2011, 133, 20712.
[10] Boger, D. L.; Coleman, R. S.; Panek, J. S.; Huber, F. X.; Sauer, J. J. Org. Chem. 1985, 50, 5377.
[11] Lionel, M.; Severin, O.; Naran G.; Alexandre, C.; Julius, R. J. Eur. J. Org. Chem. 2008. 20, 1673.
[12] Boger, D. L.; Soenen, D. R.; Boyce, C. W.; Hedrick, M. P.; Jin, Q. J. Org. Chem. 2000, 65, 2479.
[13] Eggen, M.; Nair, S. K; Georg, G. I. Org. Lett. 2001, 3, 1813.
[14] Hollinshead, D. M.; Howell, S. C.; Ley, S.V.; Mahon, M.; Ratcligffe, N. M.; Worthington, P. A. J. Chem. Soc., Perkin. Trans. 1 1983, 1579.
[15] Wang, J.-J.; Shim, Y.-K.; Jiang, G.-J.; Imafuku, K. J. Heterocycl. Chem. 2003, 40, 1075.
[16] Chaudhary, S. K.; Hernandez, O. Tetrahedron Lett. 1979, 20, 99.
/
〈 |
|
〉 |