综述与进展

基于多米诺反应合成吲哚衍生物

  • 冯亚栋 ,
  • 张红 ,
  • 程国林 ,
  • 崔秀灵
展开
  • 分子药物教育部工程研究中心 厦门市海洋与基因工程药物重点实验室 华侨大学分子药物学研究所 厦门 361021

收稿日期: 2014-03-06

  修回日期: 2014-05-04

  网络出版日期: 2014-05-23

基金资助

福建省闽江学者计划(No.10BS216)、厦门南方海洋研究中心(No.13GYY003NF16)、华侨大学基本科研业务基金资助项目

Synthesis of Indole Derivatives via Domino Reactions

  • Feng Yadong ,
  • Zhang Hong ,
  • Cheng Guolin ,
  • Cui Xiuling
Expand
  • Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen Key Laboratory of Marine and Gene Drugs, Institutes of Molecular Medicine, Huaqiao University, Xiamen 361021

Received date: 2014-03-06

  Revised date: 2014-05-04

  Online published: 2014-05-23

Supported by

Project supported by the Minjiang Scholar Program (No. 10BS216), the Xiamen Southern Oceanographic Center (No. 13GYY003NF16), and the Fundamental Research Funds of Huaqiao University

摘要

近年来,多米诺反应作为合成吲哚衍生物的有效方法已得到有机合成化学家的广泛关注. 该反应过程中,不需改变反应条件和添加试剂,中间体也无需分离和提纯,实现了原子经济和环境友好的目标. 通过过渡金属催化的多米诺反应合成吲哚衍生物,已经得到了深入研究并成为一种构筑该类杂环的有利工具. 重点综述了近年来运用金属催化多米诺反应合成吲哚及其衍生物方面的研究进展,以催化剂的类型进行分类,介绍相关反应的特点和优势.

本文引用格式

冯亚栋 , 张红 , 程国林 , 崔秀灵 . 基于多米诺反应合成吲哚衍生物[J]. 有机化学, 2014 , 34(8) : 1499 -1508 . DOI: 10.6023/cjoc201403015

Abstract

Domino reactions have received great attentions of organic chemist as an efficient protocol to synthesize indole derivatives. In this process, it is not required isolating or purifying the intermediates, changing the reaction condition and adding reagents. Transition metal-catalyzed domino reactions to synthesize indole derivatives have already been widely studied and become a powerful tool. In this paper, the progress of recent domino reactions applied to construct indole and its derivatives is reviewed, focusing on the transition metal-catalyzed domino reactions, and detailed analysis on the versatility and applications.

参考文献

[1] Sundberg, R. J. Indoles, Academic Press, London, 1996, pp. 12~15.

[2] Joule, J. A.; Thomas, E. J. Sci. Synth. 2001, 361.

[3] Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.

[4] Fischer, E.; Jourdan, F. Ber 1883, 16, 2241.

[5] Mori, M.; Chiba, K.; Ban, Y. Tetrahedron Lett. 1977, 1, 1037.

[6] Hemetsberger, H.; Knittel, D.; Weidmann, H. Monatsh. Chem. 1970, 101, 161.

[7] Aold, K.; Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 3068.

[8] Sundberg, R. J.; Lin, L. S.; Blackburn, D. E. J. Heterocycl. Chem. 1969, 6, 441.

[9] Ketcha, D. M.; Wilson, L. J.; Portlock, D. E. Tetrahedron Lett. 2000, 41, 6253.

[10] Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652.

[11] Li, S.; Han, J.; L, A. Acta Chim. Sinica 2013, 71, 295 (in Chinese).

(李森, 韩静, 李昂, 化学学报, 2013, 71, 295.)

[12] (a) Zuo, Z. Z.; Xie, W. Q.; Ma, D. W. J. Am. Chem. Soc. 2010, 132, 13226.

(b) Zuo, Z. W.; Ma, D. W. Angew. Chem., Int. Ed. 2011, 50, 12008.

(c) Zi, W. W.; Xie, W. Q.; Ma, D. W. J. Am. Chem. Soc. 2012, 134, 9126.

[13] Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147 (in Chinese).

(张丹, 秦勇, 化学学报, 2013, 71, 147.)

[14] Qiu, H.; Zhang, D.; Liu, S. Y.; Qiu, L.; Zhou, J.; Qian, Y.; Zhai, C. W.; Hu, W. H. Acta Chim. Sinica 2012, 70, 2484 (in Chinese).

(邱晃, 张丹, 刘顺英, 邱林, 周俊, 钱宇, 翟昌伟, 胡文浩, 化学学报, 2012, 70, 2484.)

[15] Tietze, L. F. Chem. Rev. 1996, 96(1), 115.

[16] Tietze, L. F.; Brasche, G.; Gericke, K. M. Dmino Reactions in Organic Synthesis, Weinheim, Wiley-VCH, 2006, pp. 25~30.

[17] Wender, P. A.; Miller, B. L. Nature 2009, 460(7252), 197.

[18] Battistuzzi, G.; Cacchi, S.; Fabrizi, G. Eur. J. Org. Chem. 2002, 16, 2671.

[19] Barluenga, J.; Jimenez-Aquino, A.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 1529.

[20] Barluenga, J.; Jimenez-Aquino, A.; Aznar, F.; Valdes, C. J. Am. Chem. Soc. 2009, 131, 4031.

[21] Jensen, T.; Pedersen, H., Bang-Andersen, B.; Madsen, R.; Jørgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888.

[22] Wurtz, S.; Rakshit, S.; Neumann, J.; Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230.

[23] Shi, Z. Z.; Zhang, C.; Li, S.; Pan, D. L.; Ding, S. T.; Cui, Y. X.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 4572.

[24] Romagnoli, R.; Baraldi, P. G.; Sarkar, T.; Carrion, M. D.; Cara, C. L.; Preti, D.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Zonta, N.; Balzarini, J.; Brancale, A.; Hsieh, H.-P.; Hamel, E. J. Med. Chem. 2008, 51, 1464.

[25] Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D. H.; Burgermeister, J.; Bohmer, F.-D.; Fiebig, H.-H.; Burger, A. M.; Baasner, S.; Beckers, T. J. Med. Chem. 2001, 44, 4535.

[26] Arthuis, M.; Pontikis, R.; Florent, C. Org. Lett. 2009, 11, 4608.

[27] Mao, H.; Wan, J. P.; Pan, Y. J.; Sun, C. R. Tetrahedron Lett. 2010, 51, 1844.

[28] Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.

[29] Catellani, M.; Motti, E.; Della, C. N. Acc. Chem. Res. 2008, 41, 1512.

[30] Candito, D. A.; Lautens, M. Org. Lett. 2010, 12, 3312.

[31] Faccini, F.; Motti, E.; Catellani, M. J. Am. Chem. Soc. 2004, 126, 78.

[32] Hassner, A.; Bunnell, C. A.; Haltiwanger, K. J. J. Org. Chem. 1978, 43, 57.

[33] Shen, J. H.; Cheng, G. L.; Cui, X. L. Prog. Chem. 2012, 24, 1324 (in Chinese).

(沈金海, 程国林, 崔秀灵, 化学进展, 2012, 24, 1324.)

[34] Wang, Y.; Wang, H.; Peng, J.; Zhu, Q. Org. Lett. 2011, 13, 4604.

[35] Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270.

[36] Piou, T.; Neuville, L.; Zhu, J. P. Tetrahedron 2013, 69, 4415.

[37] Fernandez, L. S.; Buchanan, M. S.; Carroll, A. R.; Feng, Y. J.; Quinn, R. J.; Avery, V. M. Org. Lett. 2009, 11, 329.

[38] Yokoyama, Y.; Matsumoto, T.; Murakami, Y. J. Org. Chem. 1995, 60, 1486.

[39] Tan, B.; Torres, G. H.; Barbas, C. F. J. Am. Chem. Soc. 2011, 133, 12354.

[40] Love, B. E.; Raje, P. S. Synlett 1995, 1061.

[41] Zhang, Y. H.; Liu, S.; Yu, W. W.; Hu, M.; Zhang, G. L.; Yu, Y. P. Tetrahedron 2013, 69, 2070.

[42] Xu, C.; Murugan, V. K.; Pullarkat, S. A. Org. Biomol. Chem. 2012, 10, 3875.

[43] Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6(49), 4387.

[44] Bandini, M.; Melloni. A.; Ronchi, A. U. Angew. Chem., Int. Ed. 2004, 43, 550.

[45] Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.

[46] Li, J. H.; Tang, B. X.; Tao, L. M.; Xie, Y. X.; Liang, Y.; Zhang, M. B. J. Org. Chem. 2006, 71, 7488.

[47] Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779.

[48] Chen, Y.; Xie, X. A.; Ma, D. W. J. Org. Chem. 2007, 72, 9329.

[49] Ali, M. A.; Punniyamurthy, T. Synlett 2011, 623.

[50] Xia, Z. M.; Wang, K.; Zheng, J. N.; Ma, Z. Y.; Jiang, Z. J.; Wang, X. X.; Lv, X. Org. Biomol. Chem. 2012, 10, 1602.

[51] Ma, S.; Cai, Q. Acc. Chem. Res. 2008, 41, 1451.

[52] Oda, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2012, 14, 664.

[53] Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier, R. A. Synth. Met. 1998, 96, 177.

[54] Park, J.; Park, E.; Kim, A.; Park, S. A.; Lee, Y.; Chi, K. W.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2011, 76, 2214.

[55] Ponpandian, T.; Muthusubramanian, S. Tetrahedron Lett. 2012, 53, 4248.

[56] Ambrogio, I.; Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 2007, 1775.

[57] Praveen, C.; Karthikeyan, K.; Perumal, P. T. Tetrahedron 2009, 65, 9244.

[58] Chang, H. O.; Karmakar, S.; Park, H.; Ahn, Y.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792.

[59] Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.

[60] Boyer, A.; Isono, N.; Lackner, S.; Lautens, M. Tetrahedron 2010, 66, 6468.

[61] Schonhaber, J.; Frank, W.; Muller, T. J. J. Org. Lett. 2010, 12, 4122.

[62] Reddy, B. V. S.; Swain, M.; Reddy, S. M.; Yadav, J. S.; Sridhar, B. J. Org. Chem. 2012, 77, 11355.

[63] Cui, S. L.; Wang, J.; Wang, Y. G. J. Am. Chem. Soc. 2008, 130, 13526.

[64] Jiang, B.; Li, Q. Y.; Tu, S. J.; Li, G. G. Org. Lett. 2012, 14, 5210.

文章导航

/