研究论文

Cu催化的单电子转移活性自由基聚合制备石墨烯/聚N,N-二甲基丙烯酰胺复合体系

  • 王凇旸 ,
  • 郭冠南 ,
  • 杨东 ,
  • 胡建华
展开
  • 聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433

收稿日期: 2014-04-28

  修回日期: 2014-05-07

  网络出版日期: 2014-05-23

基金资助

国家自然科学基金(Nos.51073042,51103026,51373035,51373040)、上海市自然科学基金(No.11ZR1403100)、上海科技创新行动计划(No.11JC1400600)和上海市启明星计划(No.12QB1402900)资助项目.

Preparation of Graphene/Poly(N,N-dimethylacrylamide) Nanocomposite via Cu-Catalyzed Single-Electron Transfer Living Radical Polymerization

  • Wang Songyang ,
  • Guo Guannan ,
  • Yang Dong ,
  • Hu Jianhua
Expand
  • State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433

Received date: 2014-04-28

  Revised date: 2014-05-07

  Online published: 2014-05-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51073042, 51103026, 51373035, 51373040), the Shanghai Natural Science Funds (No. 11ZR1403100), the Shanghai Scientific and Technological Innovation Project (No. 11JC1400600), and the Shanghai Rising Star Program (No. 12QB1402900).

摘要

以天然石墨为起始原料,采用改进的Hummer方法,通过强酸氧化水解和超声分散制备了氧化石墨烯,然后通过肼还原和重氮化反应得到含有羟基的石墨烯(G-OH),再通过酯化反应在石墨烯表面上引入了α-氯代羰基,从而得到了含有单电子转移活性自由基聚合(SET-LRP)引发基团的石墨烯(G-Cl). 最后,在石墨烯表面原位引发NN-二甲基丙烯酰胺(DMAA)单体的SET-LRP聚合,得到了G-PDMAA复合材料,G-PDMAA在常规的有机溶剂和水中具有良好的分散性.

本文引用格式

王凇旸 , 郭冠南 , 杨东 , 胡建华 . Cu催化的单电子转移活性自由基聚合制备石墨烯/聚N,N-二甲基丙烯酰胺复合体系[J]. 有机化学, 2014 , 34(7) : 1382 -1390 . DOI: 10.6023/cjoc201404052

Abstract

Exfoliated graphene oxide (GO) sheets were prepared from natural graphite by a modified Hummer's method, which included oxidative hydrolysis under strong acidic conditions and ultrasonic dispersing. GO was firstly reduced by hydrazine and then followed by a diazonium addition reaction to give graphene containing hydroxyls (G-OH), which was converted to graphene with singel eclectron transfer-living radical polymerization (SET-LRP) initiating groups via esterification with 2-chloropropionyl chloride. Finally, poly(N,N-dimethylacrylamide) (PDMAA) chains were grown from the surface of graphene via in situ SET-LRP to obtain graphene/PDMAA (G-PDMAA) nanocomposite. G-PDMAA nanocomposite showed good dispersity in common organic solvents and aqueous solution.

参考文献

[1] Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.

[2] Iijima, S. Nature 1991, 354, 56

[3] Reed, C. A.; Kim, K. C.; Bolskar, R. D.; Mueller, L. J. Science 2000, 289, 101.

[4] Cumings, J.; Zettl, A. Science 2000, 289, 602.

[5] Vigolo, B.; Coulon, C.; Maugey, M.; Zakri, C.; Poulin, P. Science 2005, 309, 920.

[6] Jarillo-Herrero, P.; Van-Dam, J. A.; Kouwenhoven, L. P. Nature 2006, 439, 953.

[7] Otero, G.; Biddau, G.; Sanchez-Sanchez, C.; Caillard, R.; López, M. F.; Rogero, C.; Palomares, F. J.; Cabello, N.; Basanta, M. A.; Ortega, J.; Méndez, J.; Echavarren, A. M.; Pérez, R.; Gómez-Lor, B.; Martín-Gago, J. A. Nature 2008, 454, 865.

[8] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.

[9] Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191.

[10] Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 63.

[11] Miller, D. L.; Kubista, K. D.; Rutter, G. M.; Ruan, M.; de Heer, W. A.; First, P. N.; Stroscio, J. A. Science 2009, 324, 924.

[12] Liu, Y. L.; Xie, B.; Zhang, Z.; Zheng, Q. S.; Xu, Z. P. J. Mech. Phys. Solids. 2012, 60, 591.

[13] Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.

[14] Chen, J. H.; Jang. C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Nat. Nanotechnol. 2008, 3, 206.

[15] Liu, J. Q.; Tao, L.; Yang, W. R.; Li, D.; Boyer, C.; Wuhrer, R.; Davis, T. P. Langmuir 2010, 26, 10068.

[16] Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Adv. Mater. 2009, 21, 3159.

[17] Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon 2006, 44, 3342.

[18] Deng, Y.; Li, Y. J.; Dai. J.; Lang, M. D.; Huang, X. Y. J. Polym. Sci. Polym. Chem. 2011, 49, 1582.

[19] Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. J. Am. Chem. Soc. 2008, 130, 10876.

[20] Mohanty, N.; Berry, V. Nano Lett. 2008, 8, 4469.

[21] Xu, Z. Y.; Li, Y. J.; Shi, P.; Wang, B. C.; Huang, X. Y. Chin. J. Org. Chem. 2013, 33, 573 (in Chinese).

(徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 573.)

[22] Xu, Z. Y.; Li, Y. J.; Shi, P.; Wang, B. C. Huang, X. Y. Chin. J. Org. Chem. 2013, 33, 2162 (in Chinese).

(徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 2162.)

[23] Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. Small 2009, 5, 82.

[24] Fang, M.; Wang, K. G.; Lu, H. B.; Yang, Y. L.; Nutt, S. J. Mater. Chem. 2009, 19, 7098.

[25] Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Small 2011, 7, 1876.

[26] Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Prog. Mater. Sci. 2011, 56, 1178.

[27] Du, J.; Cheng, H. M. Macromol. Chem. Phys. 2012, 213, 1060.

[28] Dai, J.; Lang, M. D. Acta Chim. Sinica 2012, 70, 1237 (in Chinese).

(戴静, 郎美东, 化学学报, 2012, 70, 1237.)

[29] Paulus, G. L. C.; Wang, Q. H.; Strano, M. S. Acc. Chem. Res. 2013, 46, 160.

[30] Salavagione, H. J.; Martinez, G.; Ellis, G. Macromol. Rapid Commun. 2011, 32, 1771.

[31] Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. J. Am. Chem. Soc. 2008, 130, 10876.

[32] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.

[33] Cao, Y. W.; Lai, Z. L.; Feng, J. C.; Wu, P. Y. J. Mater. Chem. 2011, 21, 9271.

[34] Jin, Z.; McNicholas, T. P.; Shimizu, S.; Strano, M. S. Chem. Mater. 2011, 23, 3362.

[35] Salavagione, H. J. Chem. Eur. J. 2012, 18, 4965.

[36] Shen, J. F.; Hu, Y. H.; Li, C.; Qin, C.; Ye, M. X. Small 2009, 5, 82.

[37] Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661.

[38] Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. Rev. 2001, 101, 3689.

[39] Coessens, V.; Pintauer, T.; Matyjaszewski, K. Prog. Polym. Sci. 2001, 26, 337.

[40] Perrier, S.; Takolpuckdee, P. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5347.

[41] Lowe, A. B.; McCormick, C. L. Prog. Polym. Sci. 2007, 32, 283.

[42] Rosen, B. M.; Percec, V. Chem. Rev. 2009, 109, 5069.

[43] Levere, M. E.; Nguyen, N. H.; Sun, H. J.; Percec, V. Polym. Chem. 2013, 4, 686.

[44] Tomczak, S. J.; Hogen-Esch, T. E. Polym. Prepr. 2001, 42, 562.

[45] Santos, W. L. F.; Porto, M. F.; Muniz, E. C.; Povh, N. P.; Rubira, A. F. J. Supercrit. Fluids 2001, 19, 177.

[46] Bromberg, L.; Grosberg, A. Y.; Matsuo, E. S.; Suzuki, Y.; Tanaka, T. J. Chem. Phys. 1997, 106, 2906.

[47] Deng, Y.; Li, Y. J.; Dai. J.; Lang, M. D.; Huang, X. Y. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 4747.

[48] Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. J. Mater. Chem. 2009, 19, 2457.

[49] Boukhvalov, D. W.; Katsnelson, M. I. J. Phys.: Condens. Matter 2009, 21.

[50] Liang, Y. Y.; Wu, D. Q.; Feng, X. L.; Mullen, K. Adv. Mater. 2009, 21, 1679.

[51] Queffelec, J.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 2000, 33, 8629.

文章导航

/