研究简报

爆炸条件下溶菌酶反应产物的基质辅助激光解吸-飞行时间质谱分析

  • 刘素红 ,
  • 夏攀 ,
  • 张成功 ,
  • 张立 ,
  • 郭寅龙
展开
  • a. 中国科学院上海有机化学研究所上海质谱中心 上海 200032;
    b. 上海市现场物证重点实验室 上海 200042

收稿日期: 2014-04-15

  修回日期: 2014-05-26

  网络出版日期: 2014-06-11

基金资助

上海市现场物证重点实验室开放课题(No. 2012XCWZK07)及国家自然科学基金(Nos. 21202192, 21275155)资助项目.

Analysis of Reaction Products of Lysozyme under the Explosion Condition by Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry

  • Liu Suhong ,
  • Xia Pan ,
  • Zhang Chenggong ,
  • Zhang Li ,
  • Guo Yinlong
Expand
  • a. Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b. Shanghai Institute of Forensic Science, Shanghai 200042

Received date: 2014-04-15

  Revised date: 2014-05-26

  Online published: 2014-06-11

Supported by

Project supported by the Open Project of Shanghai Institute of Forensic Science (No. 2012XCWZK07) and the National Natural Science Foundation of China (Nos. 21202192, 21275155).

摘要

以爆炸条件下溶菌酶的反应产物为研究对象,运用基质辅助激光解吸-飞行时间质谱的方法研究其反应产物与不同炸药的反应特征性. 结果显示,雷管的使用不会对溶菌酶有影响,而在有爆炸物爆炸的条件下,除了正常溶菌酶酶解多肽信号外,一些[MH+17]+,[MH+18]+,[MH+28]+,[MH+32]+和[MH+44]+的加合峰信号也能被检测到. 这可能是在炸药爆炸过程中产生的一些活性小分子(如NH3,H2O,CO/N2,O2,CO2)与溶菌酶发生反应得到的反应产物. 不同炸药生成的活性小分子能够分别与溶菌酶的某些反应位点反应生成特征性的反应产物,有利于这些炸药的分析与检测.

本文引用格式

刘素红 , 夏攀 , 张成功 , 张立 , 郭寅龙 . 爆炸条件下溶菌酶反应产物的基质辅助激光解吸-飞行时间质谱分析[J]. 有机化学, 2014 , 34(10) : 2135 -2139 . DOI: 10.6023/cjoc201404025

Abstract

Identification and determination of explosives and explosive residues were a subject of continuing strong interest in analytical chemistry and forensic science. In this paper, the reaction products of lysozyme under the explosion condition were analyzed by a MALDI-TOFMS (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry) method. There was no difference in the tryptic digest between the normal lysozyme and the reaction products generated by detonator, while some adduct peaks such as [MH+17]+, [MH+18]+, [MH+28]+, [MH+32]+, and [MH+44]+ were discovered in the explosives. This may be attributed to the reaction between the lysozyme and the active small molecule gases such as NH3, H2O, CO/N2, O2, CO2, which were generated during the explosion. Characteristic peaks which were produced by lysozyme and the active small molecule gases from different explosives can be used to discriminate the six explosives. For example, H2O molecules which were generated during the exploration by tri-nitrotoluene (TNT) can specifically react with VFGRCELAAAMKRHGLDNYR (m/z 2307) to produce a characteristic peak at m/z 2325 (2307+18). Also, H2O molecules which were generated by hexahydro-1,3,5-trinitroazine (RDX) can completely react with IVSDGNGMNAWVAWRNRCK (m/z 2177) to produce a characteristic peak at m/z (2177+18). Characteristic peak at m/z 1301 was produced by GYSLGNWVCAAK (m/z 1269) and O2 molecules for the identification of pentaerythritol tetranitrate (PETN). While for black powder, O2 and H2O can both react with IVSDGNGMNAWVAWR (m/z 1676) to produce product ions peaks at m/z 1694 and 1708. However, only the O2 molecules can react with IVSDGNGMNAWVAWR for pyrotechnic composition. As for ammon explosive, which is a mixture of inorganic explosives and organic explosives, CO2 molecules can react with a plurality of reaction sites of lysozyme to produce a series of characteristic peaks signals such as m/z 1313 (1269+44), 1720 (1676+44), 1848 (1804+44), 2722 (2678+44).

参考文献

[1] Detata, D. A.; Collins, P. A.; McKinley, A. J. J. Forensic. Sci. 2013, 58, 500.
[2] Perret, D.; Marchese, S.; Gentili, A. Chromatographa 2008, 68, 517.
[3] MacCrehan, W.; Moore, S.; Hancock, D. Anal. Chem. 2011, 83, 9054.
[4] Liu, J.; Severt, S. A.; Pan, X.; Smith, P. N.; McMurry, S. T.; Cobb, G. P. Talanta 2007, 71, 627.
[5] Tian, F. F.; Yu, J.; Hu, J, H.; Zhang, Y.; Xie, M. X.; Liu, Y.; Wang, X. F.; Liu, H. L.; Han, J. J. Chromatogr. A 2011, 1218, 3521.
[6] Burleson, G. L.; Gonzalez, B.; Simons, K.; Yu, J. C. J. Chromatogr. A 2009, 1216, 4679.
[7] Joshi, M.; Rigsby, K.; Almirall, J. R. Forensic. Sci. Int. 2011, 208, 29.
[8] Lin, H. L.; Zhu, X. H.; Fu, Q.; Xu, X. S. Forensic. Sci. Technol. 2009, (3), 37 (in Chinese).
(林宏亮, 朱晓红, 付强, 徐雪松, 刑事技术, 2009, (3), 37.)
[9] Sarazin, C.; Delaunay, N.; Costanza, C.; Eudes, V.; Gareil, P. Talanta 2013, 103, 301.
[10] Sarazin, C.; Delaunay, N.; Costanza, C.; Eudes, V.; Gareil, P. Electrophoresis 2011, 32, 1282.
[11] Gilchrist, E.; Smith, N.; Barron, L. Analyst 2012, 137, 1576.
[12] Johns, C.; Shellie, R. A.; Potter, O. G.; O'Reilly, J. W.; Hutchinson, J. P.; Guijt, R. M.; Breadmore, M. C.; Hilder, E. F.; Dicinoski, G. W.; Haddad, P. R. J. Chromatogr. A 2008, 1182, 205.
[13] Tyrrell, E.; Dicinoski, G. W.; Hilder, E. F.; Shellie, R. A.; Breadmore, M. C.; Pohl, C.A.; Addad, P. R. J. Chromatogr. A 2011, 1218, 3007.
[14] Meng, H. B.; Wang, T. R.; Guo, B. Y.; Hashi, Y.; Guo, C. X.; Lin, J. M. Talanta 2008, 76, 241.
[15] Xie, P.; Xu. J.; Hu, Z.; El-Sepai, F.; Peimin, Z.; Zhu, Y. J. Chromatogr. Sci. 2011, 49,622.
[16] Swider, J. R. J. Forensic Sci. 2013, 58, 1601.
[17] Rowell, F.; Seviour, J.; Lim, A. Y; Elumbaring-Salazar, C. G.; Loke, J.; Ma, J. Forensic Sci. Int. 2012, 221, 84.
[18] Cheng, Y. L.; Zhang, G. Y.; Li, C.; Lin, J. Oncol. Lett. 2013, 6, 1222.
[19] Liu, J.; Jiang, T.; Wei, L.; Yang, X.; Wang, C.; Zhang, X.; Xu, D.; Chen, Z.; Yang, F.; Li, J. C. BMC Infect. Dis. 2013, 13, 506.
[20] Valero-Galván, J.; González-Fernández, R.; Navarro-Cerrillo, R. M.; Gil-Pelegrín, E.; Jorrín-Novo, J. V. J. Proteome Res. 2013, 12, 5110.
[21] Fang, F.; Liu, P.; Wang, H. Y.; Zhang, L.; Zhang, J.; Gao, Y. P.; Zeng, L. M.; Guo, Y. L. Rapid Commun. Mass Spectrom. 2009, 23, 1703.
[22] Wang, J.; Zhou, Y.; Xu, M.; Rang, R.; Guo, Y. L.; Zhu, T. Y. Transplant. Proc. 2011, 43, 3738.
[23] Holst, S.; Stavenhagen, K.; Balog, C. I.; Koeleman, C. A.; McDonnell, L. M.; Mayboroda, O. A.; Verhoeven, A.; Mesker, W. E.; Tollenaar, R. A.; Deelder, A. M.; Wuhrer, M. Mol. Cell. Proteomics 2013, 12, 3081.
[24] Lu, J. J.; Tsai, F. J.; Ho, C. M.; Liu, Y. C.; Che, C. J. Anal. Chem. 2012, 84, 5685.
[25] Leng, J. P.; Zhu, D.; Wu, D. J.; Zhu, T. Y.; Zhao, N. W.; Guo, Y. L. Rapid Commun. Mass Spectrom. 2012, 26, 2555.
[26] Hong, S. M.; Tanaka, M.; Yoshii, S.; Mine, Y.; Matsui, T. Anal. Chem. 2013, 85,10033.
[27] Yu, C. T.; Guo, Y. L.; Zhang, Z. J.; Xiang, B. R. Chin. J. Org. Chem. 2000, 20, 629 (in Chinese).
(余翀天, 郭寅龙, 张尊建, 相秉仁, 有机化学, 2000, 20, 629.)
[28] Yu, C. T.; Guo, Y. L.; Zhang, Z. J.; Xiang, B. R.; An, D. K. Acta Chim. Sinica 2001, 59, 615 (in Chinese).
(余翀天, 郭寅龙, 张尊建, 相秉仁, 安登魁, 化学学报, 2001, 59, 615.)
[29] Fang, F.; Zhang, J.; Zhang, L.; Guo, Y. L. Chin. J. Chem. 2009, 27, 2397.
[30] Zhu, L.; Zhang, J.; Ren, S. F.; Guo, Y. L. Int. J. Mass. Spectrom. 2013, 34, 323.
[31] Zhu, L.; Zhang, J.; Guo, Y. L. J. Proteomics 2014, 96, 360.

文章导航

/