综述与进展

环(烷基)(氨基)卡宾及其在烯烃复分解反应中的研究展望

  • 蔡援 ,
  • 开铖 ,
  • 黄毅勇 ,
  • Verpoort Francis
展开
  • a. 武汉理工大学理学院化学系 武汉 430070;
    b. 武汉理工大学材料复合新技术国家重点实验室 武汉 430070;
    c. 比利时根特大学无机和物理化学系 比利时根特 9000

收稿日期: 2014-04-17

  修回日期: 2014-05-21

  网络出版日期: 2014-06-11

基金资助

国家自然科学基金(Nos. 21172027,21303128)资助项目.

Cyclic(alkyl)(amino)carbenes and the Research Prospect in Olefin Metathesis Reaction

  • Cai Yuan ,
  • Kai Cheng ,
  • Huang Yiyong ,
  • Francis Verpoort
Expand
  • a. Department of Chemistry, School of Science, Wuhan University of Technology, Wuhan 430070;
    b. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070;
    c. Department of Inorganic and Physical Chemistry, Ghent University, Ghent 9000

Received date: 2014-04-17

  Revised date: 2014-05-21

  Online published: 2014-06-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21172027, 21303128).

摘要

烯烃复分解反应是形成碳碳双键的重要反应之一,其发展与结构明确的钌催化剂[L2X2Ru=CHR]中配体的创制密切相关. 1999年,环二氨基卡宾配体的引入极大提高了催化剂的活性、稳定性以及官能团适用性. 2005年,Bertrand等发展了一种比环二氨基卡宾具有更强给电子能力的配体──环(烷基)(氨基)卡宾(CAACs)配体,且卡宾中心α位为一季碳原子,这使得其空间环境与其他类型卡宾配体有很大差异. 首先概述了CAACs配体的合成及性质,紧接着讨论了其在烯烃复分解催化反应中的研究进展,最后对该领域所存在的问题进行简要分析并对其发展作了展望.

本文引用格式

蔡援 , 开铖 , 黄毅勇 , Verpoort Francis . 环(烷基)(氨基)卡宾及其在烯烃复分解反应中的研究展望[J]. 有机化学, 2014 , 34(10) : 1978 -1985 . DOI: 10.6023/cjoc201404032

Abstract

Olefin metathesis has been one of the most important methods to construct carbon-carbon double bonds, which has been enabled by development of well-defined transition-metal catalysts (e.g. [L2X2Ru=CHR], L=PCy3). A significant gain to increase the catalyst stability and activity was achieved after replacing a single PCy3 ligand of L2X2Ru=CHR (L=PCy3) with cyclic biamino cabene, such as 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (H2IMes). In 2005, Bertrand et al. discovered a novel ligand-yclic(alkyl)(amino)cabene (CAAC), which displayed more electron donating and more electrophilic in comparison with cyclic diamino cabene. It is logic that more electronegative amino group is replaced by alkyl group in CAAC. Furthermore, a quaternary carbon at the α position of carbene center of CAAC may make a big difference from cyclic diamino cabene, which can change the steric environment of CAAC easily and creat a chiral center next to the carbene. In this research prospect, synthesis, property and application of CAACs in olefin metathesis catalysis are introduced. Finally, the issues remained in this research area are summarized and an outlook for the development in the future is given.

参考文献

[1] (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
(b) Luo, Z.-B.; Dai, L.-X. Chin. J. Nat. 2005, 127, 6326 (in Chinese).
(罗治斌, 戴立信, 自然杂志, 2005, 127, 6326.)
(c) Yang, X.-X.; Zhang, Y.; Shao, Z.-Y. Chin. J. Org. Chem. 2010, 30, 968 (in Chinese).
(杨晓霞, 张勇, 邵志宇, 有机化学, 2010, 30, 968.)
[2] Herisson, J. L.; Chauvin, Y. Macromol. Chem. 1971, 141, 161.
[3] Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. B. J. Am. Chem. Soc. 1990, 112, 3875.
[4] Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 1995, 34, 2039.
[5] Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887.
[6] Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
[7] Sanford, M. S.; Love, J.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543.
[8] Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705.
[9] Lavallo, V.; Canac, Y.; Dehope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 7236.
[10] Cattoën, X.; Solë, S.; Pradel, C.; Gornitzka, H.; Miqueu, K.; Bourissou, D.; Bertrand, G. J. Org. Chem. 2003, 68, 911.
[11] Lavallo, V.; Mafhouz, J.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 8670.
[12] Lavallo, V.; Canac, Y.; Dehope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 2899.
[13] Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471.
[14] (a) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Angew. Chem., Int. Ed. 2006, 45, 3448.
(b) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.
[15] (a) Dixon, D. A.; Arduengo, A. J.; Dobbs, K. D.; Khasnis, D. V. Tetrahedron Lett. 1995, 36, 645.
(b) Denk, M. K.; Rodezno, J. M.; Gupta, S.; Lough, A. J. J. Organomet. Chem. 2001, 617, 242.
(c) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. Chem. Eur. J. 1996, 2, 772.
[16] Chianese, A. R.; Kovacevic, A.; Zeglis, B. M.; Faller, J. W.; Crabtree, R. H. Organometallics 2004, 23, 2461.
[17] Canepa, G.; Brandt, C. D.; Werner, H. Organometallics 2004, 23, 1140.
[18] (a) Prinson, P.; Kartik, S.; Mondal, C.; Herbert, W.; Roesky, M. H.; Frenking, G.; Demeshko, S.; Meyer, A. F.; Jonathan, C. S.; Christian, H.; Dalal, N. S.; Ungur, L.; Chibotaru, L. F.; Kevin, P.; Meents, A.; Dittrich, B. Angew. Chem., Int. Ed. 2013, 52, 11817.
(b) Li, Y.; Mondal, K. C.; Roesky, H. W.; Zhu, H.-P.; Peter, S. J. Am. Chem. Soc. 2013, 135, 12422.
(c) Mondal, K. C.; Samuel, P. P.; Roesky, H. W.; Regine, E. C.; Irmer, H.; Dietmar, S.; Brigitte, S.; Kaim, W.; Ungur, L.; Chibotaru, L. F.; Hermann, M.; Frenking, G. J. Am. Chem. Soc. 2014, 136, 1770.
(d) Guido, D.; Rian, F.; Dewhurst, D.; Kousar, S.; Donnadieu, B.; Bertrand, G. J. Org. Chem. 2008, 693, 1674.
[19] Leuthauber, S.; Schwarz, D.; Plenio, H. Chem. Eur. J. 2007, 13, 7195.
[20] Denk, K.; Sirsch, P.; Herrmann, W. A. J. Organomet. Chem. 2002, 649, 219.
[21] Delaude, L.; Demonceau, A.; Wouters, J. Eur. J. Inorg. Chem. 2009, 13, 1882.
[22] Kuchenbeiser, G.; Soleilhavoup, M.; Donnadieu, B.; Bertrand, G. Chem. Asian J. 2009, 11, 1745.
[23] Tudose, A.; Demonceau, A.; Delaude, L. J. Organomet. Chem. 2006, 691, 5356.
[24] Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195.
[25] Huang, H.-J.; Schanz, E. D.; Nolan, S. P. Organometallics 1999, 18, 2370.
[26] McGuinness, D. S.; Cavell, K. J.; Skeleton, B. W.; White, A. H. Organometallics 1999, 18, 1596.
[27] Straub, B. Adv. Synth. Cat. 2007, 349, 204.
[28] Anderson, D. R.; Lavallo, V.; O'Leary, D. J.; Bertrand, G.; Grubbs, R. H. Angew. Chem., Int. Ed. 2007, 46, 7262.
[29] Sanford, M. S.; Love, J. A.; Grubbs, R. H. Organometallics 2001, 20, 5314.
[30] Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. Organometallics 2006, 25, 5740.
[31] Hejl, A. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA (USA), 2007.
[32] Grubbs, R. H. Handbook of Metathesis, Vol. 2, Wiley-VCH, Weinheim, Germany, 2003, p. 247.
[33] Deshmukh, P. H.; Blechert, S. Dalton Trans. 2007, 2479.
[34] Anderson, D. R.; Ung, T.; Mkrtumyan, G.; Bertrand, G.; Grubbs, R. H.; Schrodi, Y. Organometallics 2008, 27, 563.
[35] Zhang, J.; Song, S.-F.; Wang, X.; Jiao, J.-J.; Shi, M. Chem. Commun. 2013, 49, 9491.
[36] Broggi, J.; Urbina-Blanco, C. A.; Clavier, H.; Leitgeb, A.; Slugovc, C.; Alexandra, M.; Slawin, Z.; Nolan, S. P. Chem. Eur. J. 2010, 16, 9215.
[37] Anderson, D. R. Ph.D. Dissertation, California Institute of Technology, California, 2008.
[38] Lloyd-Jones, G. C.; Alder, R. W.; Owen-Smith, G. J. J. Chem. Eur. J. 2006, 12, 5361.
[39] Slugovc, C.; Burtscher, D.; Stelzer, F.; Mereiter, K. Organometallics 2005, 24, 2255.
[40] Monsaert, S.; Canck, E. D.; Drozdzak, R.; DerVoort, P. V.; Verpoort, F.; Martins, J. C.; Pieter, M. S. Eur. J. Org. Chem. 2009, 655.
[41] Lehman, S. E.; Wagener, K. B.; Akvan, S. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6134.
[42] Kabro, A.; Roisnel, T.; Fischmeister, C.; Bruneau, C. Chem. Eur. J. 2010, 16, 12255.
[43] Nakafuji, S.; Kobayashi, J.; Kawashima, T. Angew. Chem., Int. Ed. 2008, 47, 1141.
[44] Zeng, X.-M.; Frey, G. D.; Kinjo, R.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2009, 131, 8690.

文章导航

/