综述与进展

吡咯并菲啶酮构建方法学研究进展

  • 丛蔚 ,
  • 徐进宜 ,
  • 姚和权
展开
  • a. 中国药科大学天然药物活性组分与药效国家重点实验室 南京 210009;
    b. 中国药科大学药学院 南京 210009

收稿日期: 2014-04-22

  修回日期: 2014-05-29

  网络出版日期: 2014-06-16

基金资助

国家自然科学基金(No. 21272276)和长江学者和创新团队发展计划(No. IRT1193)资助项目.

Recent Advances on Construction of Pyrrolophenanthridone Skeleton

  • Cong Wei ,
  • Xu Jinyi ,
  • Yao Hequan
Expand
  • a. State Key Laboratory of Natural Medicines SKLNM, China Pharmaceutical University, Nanjing 210009;
    b. Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009

Received date: 2014-04-22

  Revised date: 2014-05-29

  Online published: 2014-06-16

Supported by

Project supported by the National Natural Science Foundation of China (No. 21272276) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1193).

摘要

吡咯并菲啶酮母核广泛存在于石蒜科生物碱中,该系列的生物碱展示出很多有价值的生物活性. 吡咯并菲啶酮独特的结构吸引了众多学者对其合成进行探索研究. 在过去的几十年中,很多有价值的构建方法被报道,其中主要以过渡金属催化或自由基历程等分子内或分子间偶联反应为主. 对其构建方法学进行了系统地综述.

本文引用格式

丛蔚 , 徐进宜 , 姚和权 . 吡咯并菲啶酮构建方法学研究进展[J]. 有机化学, 2014 , 34(10) : 1966 -1977 . DOI: 10.6023/cjoc201404041

Abstract

Pyrrolophenanthridone is a common structural motif existedexisting in a number of amaryllidaceae alkaloids, many of which possess a wide range of biological activities. The intriguing structural feature and significant biological activity have attracted much attention from synthetic communities. In the past decades, several excellent synthetic methodologies have been reported, in which intramolecular or intermolecular cross-coupling reaction through transition-metal catalyzed or radical pathway represents the most straightforward method for construction of this skeleton. This review focuses on the construction of pyrrolophenanthridone skeleton and total synthesis of amaryllidaceae alkaloids.

参考文献

[1] Martin, S. F. In The Alkaloids, Ed.: Brossi, A., Academic Press, New York, 1987, Vol. 30, Chapter 3, p. 251.
[2] (a) Pigni, N. B.; Ríos-Ruiz, S.; Martínez-Francés, V.; Nair, J. J.; Viladomat, F.; Codina, C.; Bastida, J. J. Nat. Prod. 2012, 75, 1643.
(b) Wang, L.; Zhang, X.-Q.; Yin, Z.-Q.; Wang, Y.; Ye, W.-C. Chem. Pharm. Bull. 2009, 57, 610.
(c) Ramadan, M. A.; Kamel, M. S.; Ohtani, K.; Kasai, R.; Yamasaki, K. Phytochemistry 2000, 54, 891.
(d) Ghosal, S.; Lochan, R.; Kumar, A. Y.; Srivastava, R. S. Phytochemistry 1985, 24, 1825.
(e) Ghosal, S.; Saini, K. S.; Frahm, A. W. Phytochemistry 1983, 22, 2305.
(f) Ghosal, S.; Rao, P. H.; Jaiswal, D. K.; Kumar, Y.; Frahm, A. W. Phytochemisrty 1981, 20, 2003.
[3] (a) Min, B. S.; Gao, J. J.; Nakamura, N.; Kim, Y. H.; Hattori, M. Chem. Pharm. Bull. 2001, 49, 1217.
(b) Ali, A. A.; Mesbah, M. K.; Frahm, A. W. Planta Med. 1981, 43, 407.
(c) Zee-Cheng, R. K.-Y.; Yan, S.-J.; Cheng, C. C. J. Med. Chem. 1978, 21, 199.
[4] Chattopadhyay, S.; Chattopadhyay, U.; Mathur, P. P.; Saini, K. S.; Ghosal, S. Planta Med. 1983, 49, 252.
[5] For selected reviews on transition-metal catalyzed functionalization of arenes, see:
(a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
(b) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236.
(c) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
(d) Bras, J. L.; Muzart, J. Chem. Rev. 2011, 111, 1170.
(e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293.
(f) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(g) Roger, J.; Gottumukkala, A. L.; Doucet, H. ChemCatChem 2010, 2, 20.
(h) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.
(i) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[6] For a selected review on palladium-catalyzed intramolecular cylization of heteroarenes, see:
(a) You, S.-L.; Xia, J.-B. Top. Curr. Chem. 2010, 292, 165.
For selected examples, see:
(b) Zhao, L.; Li, Z.; Chang, L.; Xu, J.; Yao, H.; Wu, X. Org. Lett. 2012, 14, 2066.
(c) Piou, T.; Neuville, L.; Zhu, J. Tetrahedron 2013, 69, 4415.
(d) Wu, K.-J.; Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 3772.
(e) Lv, J.; Liu, Q.; Tang, J.; Perdih, F.; Kranjc, K. Tetrahedron Lett. 2012, 53, 5248.
(f) Yamuna, E.; Zeller, M.; Prasad, K. J. R. Tetrahedron Lett. 2011, 52, 6030.
(g) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194.
(h) Rudolph, A.; Rackelmann, N.; Turcotte-Savard, M.-O.; Lautens, M. J. Org. Chem. 2009, 74, 289.
(i) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 6144.
(j) Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 7460.
(k) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578.
(l) Campo, M. A.; Huang, Q.; Yao, T.; Tian, Q.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 11506.
[7] Grigg, R.; Teasdale, A.; Sridharan, V. Tetrahedron Lett. 1991, 32, 3859.
[8] Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka, H. Heterocycles 1993, 36, 2597.
[9] Knölker, H.-J.; Filali, S. Synlett 2003, 1752.
[10] For selected examples, see:
(a) Pinto, A. C.; Silva, F. S. Q.; Silva, R. B. Tetrahedron Lett. 1994, 35, 8923.
(b) Garden, S. J.; Silva, R. B.; Pinto, A. C. Tetrahedron 2002, 58, 8399.
[11] Torres, J. C.; Pinto, A. C.; Garden, S. J. Tetrahedron 2004, 60, 9889.
[12] Miki, Y.; Shirokoshi, H.; Matsushita, K. Tetrahedron Lett. 1999, 40, 4347.
[13] Umemoto, H.; Dohshita, M.; Hamamoto, H.; Miki, Y. Heterocycles 2011, 83, 1111.
[14] Miki, Y.; Umemoto, H.; Dohshita, M.; Hamamoto, H. Tetrahedron Lett. 2012, 53, 1924.
[15] Cong, W.; Zhao, L.; Wu, X.; Xu, J.; Yao, H. Tetrahedron 2014, 70, 312.
[16] For selected examples, see:
(a) Xie, Y.; Yang, Y.; Huang, L.; Zhang, X.; Zhang, Y. Org. Lett. 2012, 14, 1238.
(b) Wang, Z.-Q.; Zhang, W.-W.; Gong, L.-B.; Tang, R.-Y.; Yang, X.-H.; Liu, Y.; Li, J.-H. Angew. Chem., Int. Ed. 2011, 50, 8968.
[17] Rosen, B. M.; Percec, V. Chem. Rev. 2009, 109, 5069.
[18] Lauk, U.; Dürst, D.; Fischer, W. Tetrahedron Lett. 1991, 32, 65.
[19] Tsuge, O.; Hatta, T.; Tsuchiyama, H. Chem. Lett. 1998, 155.
[20] Sperotto, E.; van Klink, G. P.; van Koten, G.; de Vries, J. G. Dalton Trans. 2010, 39, 10338.
[21] Ziegler, F. E.; Chliwner, I.; Fowler, K. W.; Kanfer, S. J.; Kuo, S. J.; Sinha, N. D. J. Am. Chem. Soc. 1980, 102, 790.
[22] Harrowven, D. C.; Lai, D.; Lucas, M. C. Synthesis 1999, 1300.
[23] Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69, 1126.
[24] Ganton, M. D.; Kerr, M. A. Org. Lett. 2005, 7, 4777.
[25] Iwao, M.; Takehara, H.; Obta, S.; Watanabe, M. Heterocycles 1994, 38, 1717.
[26] Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
[27] Hutchings, R. H.; Meyers, A. I. J. Org. Chem. 1996, 61, 1004.
[28] For selected examples, see:
(a) Fodor, G.; Nagubandi, S. Tetrahedron 1980, 36, 1279.
(b) Medley, J. W.; Movassaghi, M. Org. Lett. 2013, 15, 3614.
(c) Su, B.; Chen, F.; Wang, Q. J. Org. Chem. 2013, 78, 2775.
(d) Adachi, S.; Onozuka, M.; Yoshida, Y.; Ide, M.; Saikawa, Y.; Nakata, M. Org. Lett. 2014, 16, 358.
[29] Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.; Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W. J. Chem. Soc., Chem. Commun. 1995, 2551.
[30] Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69, 1126.
[31] Siddiqui, M. A.; Snieckus, V. Tetrahedron Lett. 1990, 31, 1523.
[32] Hartung, C. G.; Fecher, A.; Chapell, B.; Snieckus, V. Org. Lett. 2003, 5, 1899.
[33] Mentzel, U. V.; Tanner, D.; Tønder, J. E. J. Org. Chem. 2006, 71, 5807.
[34] Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 4068.
[35] Kim, H. S.; Banwell, M. G.; Willis, A. C. J. Org. Chem. 2013, 78, 5103.
[36] Pereira, M. M. A.; Prabhakar, S.; Lobo, A. M. J. Nat. Prod. 1996, 59, 744.
[37] For selected examples, see:
(a) Jia, Z.-J.; Jiang, H.; Li, J.-L.; Gschwend, B.; Li, Q.-Z.; Yin, X.; Grouleff, J.; Chen, Y.-C.; Jørgensen, K. A. J. Am. Chem. Soc. 2011, 133, 5053.
(b) Liu, Y.; Nappi, M.; Arceo, E.; Vera, S.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 15212.
(c) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350. For selected reviews, see:
(d) Jiang, X.; Wang, R. Chem. Rev. 2013, 113, 5515.
(e) Funel, J. A.; Abele, S. Angew. Chem., Int. Ed. 2013, 52, 3822.
[38] Boger, D. L.; Wolkenberg, S. E. J. Org. Chem. 2000, 65, 9120.

文章导航

/