综述与进展

自由基加成/关环反应合成1,3-二氢吲哚-2-酮的研究进展

  • 买文鹏 ,
  • 王继涛 ,
  • 杨亮茹 ,
  • 袁金伟 ,
  • 毛璞 ,
  • 肖咏梅 ,
  • 屈凌波
展开
  • 河南工业大学化学化工学院 郑州 450001

收稿日期: 2014-05-06

  修回日期: 2014-05-26

  网络出版日期: 2014-06-23

基金资助

国家自然科学基金(Nos. 21302042,21172055)和郑州市创新团队(No. 131PCXTD605)资助项目.

Progress in Synthesis of Oxindoles by Radical Addition-Cyclization

  • Mai Wenpeng ,
  • Wang Jitao ,
  • Yang Liangru ,
  • Yuan Jinwei ,
  • Mao Pu ,
  • Xiao Yongmei ,
  • Qu Lingbo
Expand
  • School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001

Received date: 2014-05-06

  Revised date: 2014-05-26

  Online published: 2014-06-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21302042 and 21172055) & the Program for Innovative Research Team from Zhengzhou City (No. 131PCXTD605).

摘要

近两年来,关于自由基加成/关环反应合成1,3-二氢吲哚-2-酮的报道屡见不鲜. 它们大多以N-芳基取代的丙烯酰胺类化合物为底物,在各种不同的金属、无金属和光的催化作用下,与不同的自由基反应,可以一步生成3,3-二取代的吲哚-2-酮衍生物. 该类方法现已成为合成含氮五元杂环的一个重要手段,用来合成1,3-二氢吲哚-2-酮及其衍生物. 目前对自由基加成/关环反应合成该类化合物的研究多集中在不同催化手段引发不同的自由基和反应机理上. 按催化剂类型的不同,对近年来自由基加成/关环反应合成吲哚-2-酮的研究进展进行了综述.

本文引用格式

买文鹏 , 王继涛 , 杨亮茹 , 袁金伟 , 毛璞 , 肖咏梅 , 屈凌波 . 自由基加成/关环反应合成1,3-二氢吲哚-2-酮的研究进展[J]. 有机化学, 2014 , 34(10) : 1958 -1965 . DOI: 10.6023/cjoc201405006

Abstract

In recent years, there are many reports about the synthesis of oxindoles by radical addition-cyclization. Most of these approaches are catalyzed by different transition metals, or under metal-free and photoredox catalysis conditions using N-arylacrylamides as main substrates. These methods have been a powerful strategy to obtain oxindoles in organic synthesis. At present, the studies on the synthesis of oxindoles by radical addition-cyclization are mainly focused on the types of radicals and the reaction mechanisms. This review will summarize the recent progress of the synthesis of oxindoles by radical addition-cyclization according to the different catalyst systems.

参考文献

[1] Jaegli, S.; Dufour, J.; Wei, H.; Piou, T.; Duan, X. H.; Vors, J. P.; Neuville, L.; Zhu, J. Org. Lett. 2010, 12, 4498.
[2] Wei, H.; Piou, T.; Dufour, J.; Neuville, L.; Zhu, J. Org. Lett. 2011, 13, 2244.
[3] Mu, X.; Wu, T.; Wang, H.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.
[4] Li, Y. M.; Sun, M.; Wang, H. L.; Tian, Q. P.; Yang, S. D. Angew. Chem., Int. Ed. 2013, 52, 3972.
[5] Wei, W. T.; Zhou, M. B.; Fan, J. H.; Liu, W.; Song, R. J.; Liu, Y.; Hu, M.; Xie, P.; Li, J. H. Angew. Chem., Int. Ed. 2013, 52, 3638.
[6] Shen, T.; Yuan, Y.; Song, S.; Jiao, N. Chem. Commun. 2014, 50, 4115.
[7] Dai, Q.; Yu, J.; Jiang, Y.; Guo, S.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 3865.
[8] Zhou, S. L.; Guo, L. N.; Wang, H.; Duan, X. H. Chem. Eur. J. 2013, 19, 12970.
[9] Wang, H.; Guo, L. N.; Duan, X. H. Adv. Synth. Catal. 2013, 355, 2222.
[10] Wang, H.; Guo, L. N.; Duan, X. H. Chem. Commun. 2013, 49, 10370.
[11] Zhou, M. B.; Wang, C. Y.; Song, R. J.; Liu, Y.; Wei, W. T.; Li, J. H. Chem. Commun. 2013, 49, 10817.
[12] Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 1322.
[13] Wei, X. H.; Li, Y. M.; Zhou, A. X.; Yang, T. T.; Yang, S. D. Org. Lett. 2013, 15, 4158.
[14] Yuan, Y.; Shen, T.; Wang, K.; Jiao, N. Chem. Asian J. 2013, 8, 2932.
[15] (a) Otera, J. Esterification, Wiley-VCH, Weinheim, Germany, 2003.
(b) Green, T. W.; Wutz, P. G. M. In Protective Groups in Organic Synthesis, Vol. II, Wiley, New York, 1991.
(c) Sano, T.; Ohashi, K.; Oriyama, T. Synthesis 1999, 1141.
[16] Xu, X.; Tang, Y.; Li, X.; Hong, G.; Fang, M.; Du, X. J. Org. Chem. 2014, 79, 446.
[17] (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(c) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
(d) Wu, X. F.; Neumann, H.; Beller, M. Chem. Asian J. 2012, 7, 1199.
[18] Yang, F.; Klumphu, P.; Liang, Y. M.; Lipshutz, B. H. Chem. Commun. 2014, 50 936.
[19] Yin, F.; Wang, X. S. Org. Lett. 2014, 16, 1128.
[20] Wang, J. Y.; Su, Y. M.; Yin, F.; Bao, Y.; Zhang, X.; Xu, Y. M.; Wang, X. S. Chem. Commun. 2014, 50, 4108.
[21] Li, Z.; Zhang, Y.; Zhang, L.; Liu, Z. Q. Org. Lett. 2014, 16, 382.
[22] Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.
[23] Zhou, M. B.; Song, R. J.; Ouyang, X. H.; Liu, Y.; Wei, W. T.; Deng, G. B.; Li, J. H. Chem. Sci. 2013, 4, 2690.
[24] Meng, Y.; Guo, L. N.; Wang, H.; Duan, X. H. Chem. Commun. 2013, 49, 7540.
[25] For selected examples, see: (a) Napier, C.; Stewart, M.; Melrose, H.; Hopkins, B.; McHarg, A.; Wallis, R. Eur. J. Pharmacol. 1999, 375, 61.
(b) Petrov, K. G.; Zhang, Y.; Carter, M.; Cockerill, G. S.; Dickerson, S.; Gauthier, C. A.; Guo, Y.; Mook, R. A.; Rusnak, D. W.; Walker, A. L.; Wood, E. R.; Lackey, K. E. Bioorg, Med. Chem. Lett. 2006, 16, 4686.
[26] Li, X.; Xu, X.; Hu, P.; Xiao, H.; Zhou, C. J. Org. Chem. 2013, 78, 7343.
[27] Wang, H.; Guo. L. N.; Duan. X. H. Org. Lett. 2013, 15, 5254.
[28] Li, Y. M.; Wei, X. H.; Li, X. A.; Yang, S. D. Chem. Commun. 2013, 49, 11701.
[29] Li, Y. M.; Shen, Y.; Chang, K. J.; Yang, S. D. Tetrahedron. Lett. 2014, 55, 2119.
[30] Shen, T.; Yuan, Y.; Jiao, N. Chem. Commun. 2014, 50, 554.
[31] Li, L.; Deng, M.; Zheng, S. C.; Xiong, Y. P.; Tan, B.; Liu, X. Y. Org. Lett. 2014, 16, 504.
[32] Wei, W.; Wen, J.; Yang, D.; Liu, X.; Guo, M.; Dong, R.; Wang, H. J. Org. Chem. 2014, 79, 4225.
[33] Li, Y. M.; Shen, Y.; Chang, K. J.; Yang, S. D. Tetrahedron 2014, 70, 1991.
[34] Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.
[35] Xu, P.; Xie, J.; Xue, Q.; Pan, C.; Cheng, Y.; Zhu, C. Chem. Eur. J. 2013, 19, 14039.
[36] Fu, W.; Xu, F.; Fu. Y.; Zhu, M.; Yu, J.; Xu, C.; Zou, D. J. Org. Chem. 2013, 78, 12202.
[37] Nishi, T.; Yamamoto, K.; Shimizu, T.; Kanbe, T.; Kimura, Y.; Nakagawa, K. Chem. Pharm. Bull. 1983, 31, 798.
[38] Nishi, T.; Tabusa, F.; Tanaka, T.; Shimizu, T.; Kanbe, T.; Kimura, Y.; Nakagawa, K. Chem. Pharm. Bull. 1983, 31, 1151.
[39] Nishi, T.; Tabusa, F.; Tanaka, T.; Shimizu, T.; Nakagawa, K. Chem. Pharm. Bull. 1985, 33, 1140.
[40] Alabaster, C. T.; Bell, A. S.; Campbell, S. F.; Ellis, P.; Henderson, C. G.; Morris, D. S.; Roberts, D. A.; Ruddock, K. S.; Samuels, G. M. R.; Stefaniak, M. H. J. Med. Chem. 1989, 32, 575.
[41] Fujioka, T.; Teramoto, S.; Mori, T.; Hosokawa, T.; Sumida, T.; Tominaga, M.; Yabuuchi, Y. J. Med. Chem. 1992, 35, 3607.
[42] Tzeng, C. C.; Chen, I. L.; Chen, Y. L.; Wang, T. C.; Chang, Y. L.; Teng, C. M. Helv. Chim. Acta 2000, 83, 349.
[43] Fujioka, T.; Teramoto, S.; Mori, T.; Hosokawa, T.; Sumida, T.; Tominaga, M.; Yabuuchi, Y. J. Med. Chem. 1992, 35, 3607.
[44] Mai, W. P.; Wang, J. T.; Yang, L. R.; Yuan, J. W.; Xiao, Y. M.; Mao, P.; Qu, L. B. Org. Lett. 2014, 16, 204.
[45] Zhou, S. L.; Guo, L. N.; Wang, S.; Duan, X. H. Chem. Commun. 2014, 50, 3589.

文章导航

/