等离子体光催化剂在有机合成中的应用研究进展
收稿日期: 2014-05-12
修回日期: 2014-06-25
网络出版日期: 2014-07-03
基金资助
河北省自然科学基金(No.B2011204051)和河北省高等学校创新团队领军人才培育计划(No.LJRC009)资助项目.
Research Progress of Plasmonic Photocatalyst in Organic Synthesis
Received date: 2014-05-12
Revised date: 2014-06-25
Online published: 2014-07-03
Supported by
Project supported by the Natural Science Foundation of Hebei Province (No.B2011204051) and the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities (No.LJRC009).
王春 , 高书涛 , 周欣 , 吴秋华 , 教彩娜 , 王志 . 等离子体光催化剂在有机合成中的应用研究进展[J]. 有机化学, 2014 , 34(11) : 2217 -2223 . DOI: 10.6023/cjoc201405021
Photocatalytic chemical transformations are a hot topic in photocatalysis field and have received significant attention in recent years. Plasmonic photocatalysts based on metal surface plasmon resonance are novel visible light response photocatalysts, which have been applied in the catalysis of various important organic reactions, such as aerobic oxidation of alcohols, epoxidation of alkene, reduction of nitro-compounds, C—C coupling, and oxidation of benzene to phenol. Herein the recent progresses in selective organic synthesis catalyzed by plasmonic photocatalysts are reviewed and a perspective on the development trend is given.
Key words: photocatalyst; plasmon; organic synthesis; catalysis; review
[1] (a) Chen, C.; Ma, W.; Zhao, J. Chem. Soc. Rev. 2010, 39, 4206. (b) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229.(c) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782.
[2] (a) Colmenares, J. C.; Luque, R. Chem. Soc. Rev. 2014, 43, 765.(b) Sarina, S.; Waclawik, E. R.; Zhu, H. Green Chem. 2013, 15, 1814.
[3] (a) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.(b) Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. ACS Sustainable Chem. Eng. 2013, 1, 1258.
[4] (a) Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911.(b) Hou, W.; Cronin, S. B. Adv. Funct. Mater. 2013, 23, 1612.
[5] Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2012, 134, 6309.
[6] Naya, S.-I.; Inoue, A.; Tada, H. J. Am. Chem. Soc. 2010, 132, 6292.
[7] Tanaka, A.; Hashimoto, K.; Kominami, H. Chem. Commun. 2011, 47, 10446.
[8] Tanaka, A.; Hashimoto, K.; Kominami, H. J. Am. Chem. Soc. 2012, 134, 14526.
[9] Maldotti, A.; Molinari, A.; Juárez, R.; Garcia, H. Chem. Sci. 2011, 2, 1831.
[10] Hallett-Tapley, G. L.; Silvero, M. J. N.; González-Béjar, M. A.; Grenier, M.; Netto-Ferreira, J. C.; Scaiano, J. C. J. Phys. Chem. C 2011, 115, 10784.
[11] Sarina, S.; Zhu, H.; Jaatinen, E.; Xiao, Q.; Liu, H.; Jia, J.; Chen, C.; Zhao, J. J. Am. Chem. Soc. 2013, 135, 5793.
[12] Sarina, S.; Bai, S.; Huang, Y.; Chen, C.; Jia, J.; Jaatinen, E.; A. Ayoko, G.; Bao, Z.; Zhu, H. Green Chem. 2014, 16, 331.
[13] Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Angew. Chem., Int. Ed. 2013, 52, 5295.
[14] Yang, X.; Zhang, A.; Gao, G.; Han, D.; Han, C.; Wang, J.; Lu, H.; Liu, J.; Tong, M. Catal. Commun. 2014, 43, 192.
[15] Christopher, P.; Xin, H.; Linic, S. Nat. Chem. 2011, 3, 467.
[16] Marimuthu, A.; Zhang, J.; Linic, S. Science 2013, 339, 1590.
[17] Ide, Y.; Nakamura, N.; Hattori, H.; Ogino, R.; Ogawa, M.; Sadakane, M.; Sano, T. Chem. Commun. 2011, 47, 11531.
[18] Ide, Y.; Matsuoka, M.; Ogawa, M. J. Am. Chem. Soc. 2010, 132, 16762.
[19] Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.-H. J. Mater. Chem. 2011, 21, 9079.
[20] Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Angew. Chem., Int. Ed. 2010, 49, 9657.
[21] van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J.; Deckert, V.; Weckhuysen, B. M. Nat. Nanotechnol. 2012, 7, 583.
[22] Tanaka, A.; Nishino, Y.; Sakaguchi, S.; Yoshikawa, T.; Imamura, K.; Hashimoto, K.; Kominami, H. Chem. Commun. 2013, 49, 2551.
[23] Guo, X.; Hao, C.; Jin, G.; Zhu, H.-Y.; Guo, X.-Y. Angew. Chem., Int. Ed. 2014, 126, 2004.
[24] Naya, S.-I.; Kimura, K.; Tada, H. ACS Catal. 2013, 3, 10.
[25] Zhao, J.; Zheng, Z.; Bottle, S.; Chou, A.; Sarina, S.; Zhu, H. Chem. Commun. 2013, 49, 2676.
[26] Gonzalez-Bejar, M.; Peters, K.; Hallett-Tapley, G. L.; Grenier, M.; Scaiano, J. C. Chem. Commun. 2013, 49, 1732.
[27] Pineda, A.; Gomez, L.; Balu, A. M.; Sebastian, V.; Ojeda, M.; Arruebo, M.; Romero, A. A.; Santamaria, J.; Luque, R. Green Chem. 2013, 15, 2043.
[28] Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L. D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C. H. J. Am. Chem. Soc. 2013, 135, 5588.
[29] Huang, X.; Li, Y.; Chen, Y.; Zhou, H.; Duan, X.; Huang, Y. Angew. Chem., Int. Ed. 2013, 52, 6063.
[30] Gao, S. T.; Shang, N. Z., Feng, C.; Wang, C.; Wang, Z. RSC Adv. 2014, 4, 39242.
[31] Tanaka, A.; Fuku, K.; Nishi, T.; Hashimoto, K.; Kominami, H. J. Phys. Chem. C 2013, 117, 16983.
/
〈 |
|
〉 |