综述与进展

等离子体光催化剂在有机合成中的应用研究进展

  • 王春 ,
  • 高书涛 ,
  • 周欣 ,
  • 吴秋华 ,
  • 教彩娜 ,
  • 王志
展开
  • 河北农业大学理学院 保定 071001

收稿日期: 2014-05-12

  修回日期: 2014-06-25

  网络出版日期: 2014-07-03

基金资助

河北省自然科学基金(No.B2011204051)和河北省高等学校创新团队领军人才培育计划(No.LJRC009)资助项目.

Research Progress of Plasmonic Photocatalyst in Organic Synthesis

  • Wang Chun ,
  • Gao Shutao ,
  • Zhou Xin ,
  • Wu Qiuhua ,
  • Jiao Caina ,
  • Wang Zhi
Expand
  • College of Science, Agricultural University of Hebei, Baoding 071001

Received date: 2014-05-12

  Revised date: 2014-06-25

  Online published: 2014-07-03

Supported by

Project supported by the Natural Science Foundation of Hebei Province (No.B2011204051) and the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities (No.LJRC009).

摘要

光催化有机合成作为光催化领域的一个前沿方向, 越来越受到人们的广泛关注. 基于金属表面等离子体共振效应的等离子体光催化剂作为一类新型可见光响应的光催化剂, 已成功用于催化醇氧化、烯烃环氧化、硝基还原、碳碳偶联、苯羟基化等诸多重要的有机反应, 在利用太阳能方面显示出巨大的应用潜力. 总结了等离子体光催化剂在有机合成中的最新研究进展, 并对其发展趋势进行了展望.

本文引用格式

王春 , 高书涛 , 周欣 , 吴秋华 , 教彩娜 , 王志 . 等离子体光催化剂在有机合成中的应用研究进展[J]. 有机化学, 2014 , 34(11) : 2217 -2223 . DOI: 10.6023/cjoc201405021

Abstract

Photocatalytic chemical transformations are a hot topic in photocatalysis field and have received significant attention in recent years. Plasmonic photocatalysts based on metal surface plasmon resonance are novel visible light response photocatalysts, which have been applied in the catalysis of various important organic reactions, such as aerobic oxidation of alcohols, epoxidation of alkene, reduction of nitro-compounds, C—C coupling, and oxidation of benzene to phenol. Herein the recent progresses in selective organic synthesis catalyzed by plasmonic photocatalysts are reviewed and a perspective on the development trend is given.

参考文献

[1] (a) Chen, C.; Ma, W.; Zhao, J. Chem. Soc. Rev. 2010, 39, 4206. (b) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229.(c) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782.
[2] (a) Colmenares, J. C.; Luque, R. Chem. Soc. Rev. 2014, 43, 765.(b) Sarina, S.; Waclawik, E. R.; Zhu, H. Green Chem. 2013, 15, 1814.
[3] (a) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.(b) Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. ACS Sustainable Chem. Eng. 2013, 1, 1258.
[4] (a) Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911.(b) Hou, W.; Cronin, S. B. Adv. Funct. Mater. 2013, 23, 1612.
[5] Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2012, 134, 6309.
[6] Naya, S.-I.; Inoue, A.; Tada, H. J. Am. Chem. Soc. 2010, 132, 6292.
[7] Tanaka, A.; Hashimoto, K.; Kominami, H. Chem. Commun. 2011, 47, 10446.
[8] Tanaka, A.; Hashimoto, K.; Kominami, H. J. Am. Chem. Soc. 2012, 134, 14526.
[9] Maldotti, A.; Molinari, A.; Juárez, R.; Garcia, H. Chem. Sci. 2011, 2, 1831.
[10] Hallett-Tapley, G. L.; Silvero, M. J. N.; González-Béjar, M. A.; Grenier, M.; Netto-Ferreira, J. C.; Scaiano, J. C. J. Phys. Chem. C 2011, 115, 10784.
[11] Sarina, S.; Zhu, H.; Jaatinen, E.; Xiao, Q.; Liu, H.; Jia, J.; Chen, C.; Zhao, J. J. Am. Chem. Soc. 2013, 135, 5793.
[12] Sarina, S.; Bai, S.; Huang, Y.; Chen, C.; Jia, J.; Jaatinen, E.; A. Ayoko, G.; Bao, Z.; Zhu, H. Green Chem. 2014, 16, 331.
[13] Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Angew. Chem., Int. Ed. 2013, 52, 5295.
[14] Yang, X.; Zhang, A.; Gao, G.; Han, D.; Han, C.; Wang, J.; Lu, H.; Liu, J.; Tong, M. Catal. Commun. 2014, 43, 192.
[15] Christopher, P.; Xin, H.; Linic, S. Nat. Chem. 2011, 3, 467.
[16] Marimuthu, A.; Zhang, J.; Linic, S. Science 2013, 339, 1590.
[17] Ide, Y.; Nakamura, N.; Hattori, H.; Ogino, R.; Ogawa, M.; Sadakane, M.; Sano, T. Chem. Commun. 2011, 47, 11531.
[18] Ide, Y.; Matsuoka, M.; Ogawa, M. J. Am. Chem. Soc. 2010, 132, 16762.
[19] Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M.-H. J. Mater. Chem. 2011, 21, 9079.
[20] Zhu, H.; Ke, X.; Yang, X.; Sarina, S.; Liu, H. Angew. Chem., Int. Ed. 2010, 49, 9657.
[21] van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J.; Deckert, V.; Weckhuysen, B. M. Nat. Nanotechnol. 2012, 7, 583.
[22] Tanaka, A.; Nishino, Y.; Sakaguchi, S.; Yoshikawa, T.; Imamura, K.; Hashimoto, K.; Kominami, H. Chem. Commun. 2013, 49, 2551.
[23] Guo, X.; Hao, C.; Jin, G.; Zhu, H.-Y.; Guo, X.-Y. Angew. Chem., Int. Ed. 2014, 126, 2004.
[24] Naya, S.-I.; Kimura, K.; Tada, H. ACS Catal. 2013, 3, 10.
[25] Zhao, J.; Zheng, Z.; Bottle, S.; Chou, A.; Sarina, S.; Zhu, H. Chem. Commun. 2013, 49, 2676.
[26] Gonzalez-Bejar, M.; Peters, K.; Hallett-Tapley, G. L.; Grenier, M.; Scaiano, J. C. Chem. Commun. 2013, 49, 1732.
[27] Pineda, A.; Gomez, L.; Balu, A. M.; Sebastian, V.; Ojeda, M.; Arruebo, M.; Romero, A. A.; Santamaria, J.; Luque, R. Green Chem. 2013, 15, 2043.
[28] Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L. D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C. H. J. Am. Chem. Soc. 2013, 135, 5588.
[29] Huang, X.; Li, Y.; Chen, Y.; Zhou, H.; Duan, X.; Huang, Y. Angew. Chem., Int. Ed. 2013, 52, 6063.
[30] Gao, S. T.; Shang, N. Z., Feng, C.; Wang, C.; Wang, Z. RSC Adv. 2014, 4, 39242.
[31] Tanaka, A.; Fuku, K.; Nishi, T.; Hashimoto, K.; Kominami, H. J. Phys. Chem. C 2013, 117, 16983.

文章导航

/