综述与进展

Mitsunobu反应在构建化学键中的研究进展

  • 王小龙 ,
  • 杨芳 ,
  • 薛自燕 ,
  • 王晓强
展开
  • 兰州交通大学化学与生物工程学院 兰州 730070

收稿日期: 2014-06-04

  修回日期: 2014-08-29

  网络出版日期: 2014-09-18

基金资助

兰州交通大学青蓝人才工程基金(No. QL-06-01A)资助项目.

Progress of Mitsunobu Reaction in Construction of Chemical Bonds

  • Wang Xiaolong ,
  • Yang Fang ,
  • Xue Ziyan ,
  • Wang Xiaoqiang
Expand
  • School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070

Received date: 2014-06-04

  Revised date: 2014-08-29

  Online published: 2014-09-18

Supported by

Project supported by the Qing Lan Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-06-01A).

摘要

Mitsunobu反应是醇与酸性化合物偶联形成新化学键的一种有效方法, 可以用来构建碳-氧、碳-氮、碳-硫及碳-碳等化学键, 在天然产物和功能有机分子的合成中已得到了非常广泛的应用. 对Mitsunobu反应的机理及其在构建化学键中的应用进行了介绍, 并对该反应的区域选择性进行了较为系统的总结.

本文引用格式

王小龙 , 杨芳 , 薛自燕 , 王晓强 . Mitsunobu反应在构建化学键中的研究进展[J]. 有机化学, 2015 , 35(1) : 29 -38 . DOI: 10.6023/cjoc201406003

Abstract

The Mitsunobu reaction is an effective method for making a new chemical bond by condensation of an alcohol with an acidic compound. It can be applied for the construction of C—O, C—N, C—S and C—C bonds, and has been widely used in the synthesis of natural products and functional organic molecules. In this review, the mechanism of the Mitsunobu reaction and its application in the construction of chemical bonds are introduced. Moreover, the regioselectivity of this reaction is systematically summarized.

参考文献

[1] Mitsunobu, O. Synthesis 1981, 1.
[2] Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551.
[3] Reynolds, A. J.; Kassiou, M. Curr. Org. Chem. 2009, 13, 1610.
[4] Hughes, D. L. Org. Prep. Proced. Int. 1996, 28, 127.
[5] But, T. Y. S.; Toy, P. H. Chem. Asian J. 2007, 2, 1340.
[6] Ren, X. F.; Xu, J. L.; Chen, S. H. Chin. J. Org. Chem. 2006, 26, 454 (in Chinese). (任新锋, 徐菁利, 陈思浩, 有机化学, 2006, 26, 454.)
[7] Figlus, M.; Wellaway, N.; Cooper, A. W. J.; Sollis, S. L.; Hartley, R. C. ACS Comb. Sci. 2011, 13, 280.
[8] Michigami, K.; Hayashi, M. Tetrahedron 2012, 68, 1092.
[9] Schenk, S.; Weston, J.; Anders, E. J. Am. Chem. Soc. 2005, 127, 12566 and references therein.
[10] Swamy, K. C. K.; Kumar, K. P.; Kumar, N. N. B. J. Org. Chem. 2006, 71, 1002.
[11] (a) Ahn, C.; Correia, R.; DeShong, P. J. Org. Chem. 2002, 67, 1751. (b) Ahn, C.; DeShong, P. J. Org. Chem. 2002, 67, 1754.
[12] Fitzjarrald, V. P.; Pongdee, R. Tetrahedron Lett. 2007, 48, 3553.
[13] Perali, R. S.; Mandava, S.; Chunduri, V. R. Tetrahedron Lett. 2011, 52, 3045.
[14] Huang, J.; Yang, J. R.; Zhang, J.; Yang, J. J. Am. Chem. Soc. 2012, 134, 8806.
[15] ?nie?ek, M.; Stecko, S.; Panfil, I.; Furman, B.; Chmielewski, M. J. Org. Chem. 2013, 78, 7048.
[16] (a) Ting, S. Z. Y.; Baird, L. J.; Dunn, E.; Hanna, R.; Leahy, D.; Chan, A.; Miller, J. H.; Teesdale-Spittle, P. H.; Harvey, J. E. Tetrahedron 2013, 69, 10581. (b) Venkanna, A.; Sreedhar, E.; Siva, B.; Babu, K. S.; Prasad, K. R.; Rao, J. M. Tetrahedron: Asymmetry 2013, 24, 1010.
[17] Williams, B. D.; Smith, A. B. Org. Lett. 2013, 15, 4584.
[18] (a) Lanning, M. E.; Fletcher, S. Tetrahedron Lett. 2013, 54, 4624. (b) Yang, J.; Dai, L.; Wang, X.; Chen, Y. Tetrahedron 2011, 67, 1456.
[19] Trost, B. M.; Quintard, A. Angew. Chem., Int. Ed. 2012, 51, 6704.
[20] Krysiak, J. M.; Kreuzer, J.; Macheroux, P.; Hermetter, A.; Sieber, S. A.; Breinbauer, R. Angew. Chem., Int. Ed. 2012, 51, 7035.
[21] Lan, P.; Banwell, M. G.; Willis, A. C. J. Org. Chem. 2014, 79, 2829.
[22] Lu, P.; Gu, Z.; Zakarian, A. J. Am. Chem. Soc. 2013, 135, 14552.
[23] Caras-Quintero, D.; Bäuerle, P. Chem. Commun. 2002, 2690.
[24] Xu, Z.; Kang, J. H.; Wang, F.; Paek, S. M.; Hwang, S. J.; Kim, Y.; Kim, S. J.; Choy, J. H.; Yoon, J. Tetrahedron Lett. 2011, 52, 2823.
[25] García-Delgado, N.; Riera, A.; Verdaguer, X. Org. Lett. 2007, 9, 635.
[26] Samanta, K.; Srivastava, N.; Saha, S.; Panda, G. Org. Biomol. Chem. 2012, 10, 1553.
[27] Lee, J. C.; Francis, S.; Dutta, D.; Gupta, V.; Yang, Y.; Zhu, J.-Y.; Tash, J. S.; Schönbrunn, E.; Georg, G. I. J. Org. Chem. 2012, 77, 3082.
[28] Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
[29] Maharvi, G. M.; Fauq, A. H. Tetrahedron Lett. 2010, 51, 6542.
[30] Suetsugu, S.; Nishiguchi, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2014, 16, 996.
[31] Li, Q.; Li, G.; Ma, S.; Feng, P.; Shi, Y. Org. Lett. 2013, 15, 2601.
[32] Ma, C.; Gu, J.; Teng, B.; Zhou, Q.-Q.; Li, R.; Chen, Y.-C. Org. Lett. 2013, 15, 6206.
[33] Green, J. E.; Bender, D. M.; Jackson, S.; O'Donnell, M. J.; McCarthy, J. R. Org. Lett. 2009, 11, 807.
[34] Gómez-Vidal, J. A.; Silverman, R. B. Org. Lett. 2001, 3, 2481.
[35] Busto, E.; Gotor-Fernández, V.; Gotor, V. J. Org. Chem. 2012, 77, 4842.
[36] (a) Kalita, M.; Cingarapu, S.; Roy, S.; Park, S. C.; Higgins, D.; Jankowiak, R.; Chikan, V.; Klabunde, K. J.; Bossmann, S. H. Inorg. Chem. 2012, 51, 4521. (b) Jiang, B.; Wang, J.; Huang, Z. Org. Lett. 2012, 14, 2070.
[37] Morita, N.; Krause, N. Eur. J. Org. Chem. 2006, 13, 4634.
[38] Petit, S.; Azzouz, R.; Fruit, C.; Bischoff, L.; Marsais, F. Tetrahedron Lett. 2008, 49, 3663.
[39] Babij, N. R.; Wolfe, J. P. Angew. Chem., Int. Ed. 2012, 51, 4128.
[40] Wang, X. L.; Liu, D.; Xia, Y. M.; Cao, X. P.; Pan, X. F. Chin. J. Chem. 2004, 22, 467.
[41] Gärtner, M.; Kossler, D.; Pflästerer, D.; Helmchen, G. J. Org. Chem. 2012, 77, 4491.
[42] Hillier, M. C.; Desrosiers, J. N.; Marcoux, J. F.; Grabowski, E. J. J. Org. Lett. 2004, 6, 573.
[43] Prakash, G. K. S.; Chacko, S.; Alconcel, S.; Stewart, T.; Mathew, T.; Olah, G. A. Angew. Chem., Int. Ed. 2007, 46, 4933.
[44] Ko, S. Y. J. Org. Chem. 2002, 67, 2689.
[45] Gravotto, G.; Chimichi, S.; Robaldo, B.; Boccalini, M. Tetrahedron Lett. 2003, 44, 8383.
[46] Wang, X. L.; Ju, T. T.; Li, X. D. Cao, X. P. Synlett 2010, 19, 2947.
[47] Dunford, D. G.; Chaudhry, F.; Kariuki, B.; Knight, D. W.; Wheeler, R. C. Tetrahedron Lett. 2012, 53, 7006.
[48] Tahir, H.; Hindsgaul, O. J. Org. Chem. 2000, 65, 911.
[49] Appendino, G.; Minassi, A.; Daddario, N.; Bianchi, F.; Tron, G. C. Org. Lett. 2002, 4, 3839.
[50] Wang, G.; Ella-Menye, J. R.; Martin, M. S.; Yang, H.; Williams, K. Org. Lett. 2008, 10, 4203.
[51] Wang, X. L.; Ma, Y. Y.; Ju, T. T. J. Chem. Res. 2013, 7, 417.
[52] Fletcher, S.; Shahani, V. M.; Gunning, P. T. Tetrahedron Lett. 2009, 50, 4258.
[53] Chen, L.; Fletcher, S. Tetrahedron Lett. 2014, 55, 1693.
[54] (a) Krohn, K.; Ahmed, I.; John, M. Synthesis 2009, 5, 779. (b) Krohn, K.; Ahmed, I.; John, M.; Letzel, M. C.; Kuck, D. Eur. J. Org. Chem. 2010, 13, 2544.
[55] Azzouz, R.; Fruit, C.; Bischoff, L.; Marsais, F. J. Org. Chem. 2008, 73, 1154.
[56] (a) Kim, Y. W.; Hackett, J. C.; Brueggemeier, R. W. J. Med. Chem. 2004, 47, 4032. (b) Su, B.; Hackett, J. C.; Díaz-Cruz, E. S.; Kim, Y. W.; Brueggemeier, R. W. Bioorg. Med. Chem. 2005, 13, 6571.

文章导航

/