乙酰乙酰苯胺类化合物导向的2,2-二溴乙酰苯胺衍生物的合成
收稿日期: 2014-10-08
修回日期: 2014-11-11
网络出版日期: 2014-11-11
基金资助
广东省自然科学基金(No. S2012040007868)和广东省优秀青年基金(No. 2013LYM_0059)资助项目.
An Efficient Access to α-Dibromosubstituted Arylamides from β-Keto Arylamides
Received date: 2014-10-08
Revised date: 2014-11-11
Online published: 2014-11-11
Supported by
Project supported by the Natural Science Foundation of Guangdong Province (No. S2012040007868) and the Excellent Young Scientist Fund of Education Department of Guangdong Province (No. 2013LYM_0059).
以N-溴代丁二酰亚胺(NBS)为溴源, 醋酸为催化剂和溶剂, 经过活泼亚甲基的两次连续的溴化, 羰基的质子化和碳碳键的断裂等过程合成了2,2-二溴乙酰苯胺衍生物. 该方法具有操作简便、反应条件温和和高效等特点. 所有反应都能以极高的收率得到相应的目标产物.
关键词: 碳溴键形成; 碳碳键断裂; 2,2-二溴乙酰苯胺衍生物; 乙酰乙酰苯胺类化合物
刘卫兵 , 陈翠 , 邱会华 . 乙酰乙酰苯胺类化合物导向的2,2-二溴乙酰苯胺衍生物的合成[J]. 有机化学, 2015 , 35(2) : 450 -454 . DOI: 10.6023/cjoc201410008
A remarkably simple, mild and efficient approach for carbon-carbon bond cleavage of β-keto amides using N-bromobutanimide (NBS) as the bromine source and acetic acid as the catalyst to construct α-dibromosubstituted arylamides is achieved. Moreover, tandem carbon-bromine bond formation, followed by protonation of carbonyl and cleavage of C—C bond in one pot has also been demonstrated. All the reactions were carried out under extremely mild conditions and provided almost quantitative yields of the products.
[1] Clemens, R. J. Chem. Rev. 1986, 86, 241.
[2] Wang, Y.; Xin, X.; Liang, Y.; Lin, Y.; Duan, H.; Dong, D. Adv. Synth. Catal. 2009, 351, 2217.
[3] Tan, L. Q.; Zhou, P.; Chen, C.; Liu, W. B. Beilstein J. Org. Chem. 2013, 9, 2681.
[4] Liu, W. B.; Zhou, P.; Chen, C.; Zhang, Q.; Zhu, Z. B. Org. Biomol. Chem. 2013, 11, 542.
[5] Zhang, B.; Cui, Y. X.; Jiao, N. Chem. Commun. 2012, 48, 4498.
[6] Sekine, K.; Takayanagi, A.; Kikuchi, S.; Yamada, T. Chem. Commun. 2013, 49, 11320.
[7] Shen, T.; Yuan, Y. Z.; Jiao, N. Chem. Commun. 2014, 50, 554.
[8] Ghorai, S.; Mukherjee, C. Chem. Commun. 2012, 48, 10180.
[9] Guo, B.; Zhang, Q.; Li, G. Y.; Yao, J. Y.; Hu, C. W. Green Chem. 2012, 14, 1880.
[10] Cho, S. H.; Kim, I. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
[11] Sharma, S.; Han, S.; Kim, M.; Mishra, N. K.; Park, J.; Shin, Y.; Ha, J.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Org. Biomol. Chem. 2014, 12, 1703.
[12] Liu, W. B.; Chen, C.; Zhang, Q.; Zhu, Z. B. Beilstein J. Org. Chem. 2011, 7, 1436.
[13] Liu, W. B.; Chen, C.; Zhang, Q.; Zhu, Z. B. Beilstein J. Org. Chem. 2012, 8, 344.
[14] Zhang, Q.; Liu, W. B.; Chen, C.; Tan, L. Q. Chin. J. Chem. 2013, 31, 453.
[15] Braddock, D. C.; Roy, D.; Lenoir, D.; Moore, E.; Rzepa, H. S.; Wu, J. I.; Schleyer, P. R. Chem. Commun. 2012, 48, 8943.
[16] Awwadi, F. F.; Haddad, S. F.; Turnbull, M. M.; Landee, C. P.;Willett, R. D. CrystEngComm 2013, 15, 3111.
[17] Xu, D. Q.; Wang, S. F.; Shen, Z. Q.; Xia, C. G.; Sun, W. Org. Biomol. Chem. 2012, 10, 2730.
[18] John, A.; Nicholas, K. M. J. Org. Chem. 2012, 77, 5600.
[19] Xue, H. X.; Tan, H.; Wei, D. L.; Wei, Y.; Lin, S. X.; Liang, F. S.; Zhao, B. Z. RSC Adv. 2013, 3, 5382.
[20] Wei, Y.; Lin, S. X.; Liang, F. S.; Zhang, J. P. Org. Lett. 2013, 15, 852.
[21] Zong, X. L.; Zheng, Q. Z.; Jiao, N. Org. Biomol. Chem. 2014, 12, 1198.
[22] Mayhoub, A. S.; Talukdar, A.; Cushman, M. J. Org. Chem. 2010, 75, 3507.
[23] Ji, X. Y.; Duan, Z. Q.; Qian, Y.; Han, J. L.; Li, G. G.; Pan, Y. RSC Adv. 2012, 2, 5565.
[24] Goswami, P.; Baruah, A.; Dasa, B. Adv. Synth. Catal. 2009, 351, 1483.
[25] Yang, D.; Yan, Y. L.; Lui. B. J. Org. Chem. 2002, 67, 7429.
[26] Khan, A. T.; Ali, M. A.; Goswami, P.; Choudhury, L. H. J. Org. Chem. 2006, 71, 8961.
[27] Jeyakumar, K.; Chand, D. K. Synthesis 2009, 306.
[28] Biswas, S.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2010, 2861.
[29] Christoffers, J. Chem. Commun. 1997, 943.
[30] Christoffers, J. J. Chem. Soc., Perkin Trans. 1 1997, 3141.
[31] Liu, W. B.; Chen, C.; Zhang, Q.; Zhu, Z. B. Beilstein J. Org. Chem. 2012, 8, 344.
[32] Kawakami, K.; Tsuda, A. Chem. Asian J. 2012, 7, 2240.
[33] Berson, J. A.; Jones, W. M. J. Org. Chem. 1956, 21, 1326.
/
〈 |
|
〉 |