导向的过渡金属催化不活泼C(sp3)—H键氧化反应研究进展
收稿日期: 2014-10-03
修回日期: 2014-10-05
网络出版日期: 2014-12-08
基金资助
国家自然科学基金(No. 21261025)、药用资源化学与药物分子工程教育部重点实验室开放基金(Nos. CMEMR2011-09, CMEMR2014-B08)、广西高校高水平创新团队及卓越学者计划.
Progress in Directed Transition Metal-Catalyzed Oxidation of Inactive C(sp3)—H Bonds
Received date: 2014-10-03
Revised date: 2014-10-05
Online published: 2014-12-08
Supported by
Project supported by the National Natural Science Foundation of China (No. 21261025), the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education (Nos. CMEMR2011-09, CMEMR2014-B08), and the Innovative Team & Outstanding Talent Program of Colleges and Universities in Guangxi.
近年来, 过渡金属催化不活泼C(sp3)—H键氧化反应取得重要进展. 该领域的研究主要集中在过渡金属催化甲烷选择性氧化, 以及过渡金属催化导向基团螯合甲基氧化方面, 这些研究成果实现了许多传统氧化方法不能完成的高效选择性转化. 重点概述导向基团(肟、噁唑啉、吡啶、酰胺、羧酸、羟基)对促进过渡金属催化氧化C(sp3)—H键的影响, 底物的乙酰氧基化、羟基化、羰基化、酯化反应以及催化反应体系和相关机制.
关键词: 过渡金属催化; 不活泼C(sp3)—H键; 氧化反应
谭明雄 , 顾运琼 , 罗旭健 , 张培 . 导向的过渡金属催化不活泼C(sp3)—H键氧化反应研究进展[J]. 有机化学, 2015 , 35(4) : 781 -788 . DOI: 10.6023/cjoc201409046
The recent progress in transition metal-catalyzed oxidation of C(sp3)—H bonds has been made. Researches focus on the selective oxidation of methane, as well as the oxidation of methyl groups assisted by chelating directing groups. The researches lead to efficient and highly selective oxidative conversion that are unable to solve by traditional methods. This review covers the effect of directing groups (oxime, oxazoline, pyridine, amide, carboxylic acid, and hydroxyl) on promoting oxidation of C(sp3)—H bonds, the formation of acetylation, hydroxylation, carbonylation, esterification, and metal-catalyzed oxidative reaction system and mechanisms.
Key words: transition metal-catalyzed; inactive C(sp3)—H bonds; oxidation
[1] Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
[2] Chen, K.; Baran, P. S. Nature 2009, 459, 824.
[3] Xie, Y. X.; Song, R. J.; Xiang, J. N.; Li, J. H. Chin. J. Org. Chem. 2012, 32, 1555 (in Chinese).
(谢叶香, 宋仁杰, 向建南, 李金恒, 有机化学, 2012, 32, 1555.)
[4] Zhang, C. X.; Li, N. N.; Li, X.; Chang, H. H.; Liu, Q.; Wei, W. L. Chin. J. Org. Chem. 2014, 34, 81 (in Chinese).
(张聪霞, 李娜娜, 李兴, 常宏宏, 刘强, 魏文珑, 有机化学, 2014, 34, 81.)
[5] Feng, Y.; Chen, G. Angew. Chem., Int. Ed. 2010, 49, 958.
[6] Giannis, A.; Heretsch, P.; Sarli, V.; Stößel, A. Angew. Chem., Int. Ed. 2009, 48, 7911.
[7] Thomas, W. L.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[8] Li, Y. M.; Ma, L. N.; Li, Z. P. Chin. J. Org. Chem. 2013, 33, 714 (in Chinese).
(李远明, 马丽娜, 李志平, 有机化学, 2013, 33, 704.)
[9] Shi, X. Y.; Han, X. Y.; Ma, W. J.; Wei, J. F. Chin. J. Org. Chem. 2011, 31, 297 (in Chinese).
(石先莹, 韩晓燕, 马文娟, 魏俊发, 有机化学, 2011, 31, 297.)
[10] Eegle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2012, 67, 88.
[11] Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[12] Chen, G. H.; Shi, Z. J. Nat. Sci. Rev. 2014, 2, 172.
[13] Crabtree, R. H. J. Organomet. Chem. 2004, 689, 4083.
[14] Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
[15] White, M. C. Science 2012, 17, 806.
[16] Vedernikov, N. A. A. Chem. Res. 2012, 6, 803.
[17] Periana, R. A.; Taube, D. J.; Evitt, E. R.; LÖffler, D. G.; Wentrcek, P. R.; Voss, G.; Masuda, T. Science 1993, 259, 340.
[18] Periana, R. A.; Taube, D. J; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280, 560.
[19] Kao, L. C.; Hutson, A. C.; Sen, A. J. Am. Chem. Soc. 1991, 113, 700.
[20] Lin, M.; Shen, C.; Garcia-Zayas, E. A.; Sen, A. J. Am. Chem. Soc. 2001, 123, 1000.
[21] Bar-Nahum, I.; Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2004, 126, 10236.
[22] Periana, R. A.; Mironow, O.; Taube, D.; Bhalla, G.; Jones, C. Science 2003, 301, 814.
[23] Gretz, E.; Oliver, T. F.; Sen, A. J. Am. Chem. Soc. 1987, 109, 8109.
[24] An, Z. J.; Pan, X. l.; Liu, X. M.; Han, X. W.; Bao, X. H. J. Am. Chem. Soc. 2006, 128, 16028.
[25] Labinger, J. A.; Bercaw, J. E. Nature 2002, 41, 507.
[26] Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
[27] TranLy, D.; Daugulis, O. Angew. Chem., Int. Ed. 2012, 51, 5188.
[28] Carr, K.; Saxton, H. M.; Sutherland, J. K. J. Chem. Soc., Perkin Trans. 1 1988, 1599.
[29] Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124, 11856.
[30] Hinman, A.; Du, B. J. J. Am. Chem. Soc. 2003, 125, 11510.
[31] Renkema, K. B.; Kissin, Y. V.; Goldman, A. S. J. Am. Chem. Soc. 2003, 125, 7770.
[32] Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995.
[33] Bore, L.; Honda, T.; Gribble, G. W. J. Org. Chem. 2000, 65, 6278.
[34] Baldwin, J. E.; Jones, R. H.; Najera, C.; Yus, M. Tetrahedron 1985, 41, 699.
[35] Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300.
[36] Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542.
[37] Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Naggar, I. C.; Guo, C. Y.; Foxman, B. M.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 7420.
[38] Zhang, B.; Guan, H. X.; Liu, B.; Shi, B. F. Chin. J. Org. Chem. 2014, 34, 1487 (in Chinese).
(张博, 管晗曦, 刘斌, 史炳锋, 有机化学, 2014, 34, 1487.)
[39] Chen, M. S.; White, M. C. Science 2007, 318, 783.
[40] Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.
[41] McMurray, L.; ÒHara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885.
[42] Godula, K.; Sames, D. Science 2012, 312, 67.
[43] Ren, Z.; Mo, F. Y.; Dong, G. B. J. Am. Chem. Soc. 2012, 134, 16991.
[44] Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.; Vedernikov, N. A. Chem. Commun. 2008, 3625.
[45] Wang, D. Y.; Zavalij, P. Y.; Vedernikov, N. A. Organometallics 2013, 32, 4882.
[46] Vedernikov, N. A. Chem. Commun. 2009, 4781.
[47] Liu, W. G.; Sberegaeva, A. V.; Nielsen, R. J.; Goddard, W. A.; Vedernikov, N. A. J. Am. Chem. Soc. 2014, 136, 2335.
[48] Sberegaeva, A. V.; Liu, W. G.; Nielsen, R. J.; Goddard, W. A.; Vedernikov, N. A. J. Am. Chem. Soc. 2014, 136, 4761.
[49] Liu, B. X.; Zhou,T.; Li, B.; Xu, S. S.; Song, H. B.; Wang, B. Q. Angew. Chem., Int. Ed. 2014, 53, 4191.
[50] Yang, M. Y.; Su, B.; Wang, Y.; Chen, K.; Jiang, X. Y.; Zhang, Y. F.; Zhang, X. S.; Chen, G. H.; Chen, Y.; Cao, Z. C.; Guo, Q. Y.; Wang, L. S.; Shi, Z. J. Nat. Commun. 2014, 5, 4707.
[51] Zhu, R. Y.; He, J.; Wang, X. C.; Yu, J. Q. J. Am. Chem. Soc. 2014, 136, 13194.
[52] Yan, J. X.; Li, H.; Liu, X. W.; Shi, J. L.; Wang, X.; Shi, Z. J. Angew. Chem., Int. Ed. 2014, 53, 4945.
[53] Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
[54] Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 15, 3391.
[55] Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 6898.
[56] Hasegawa, N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 8070.
[57] Zhang, L. S.; Chen, G. H.; Wang, X.; Guo, Q. Y.; Zhang, X. S.; Pan, F.; Chen, K.; Shi, S. J. Angew. Chem., Int. Ed. 2014, 53, 3899.
[58] Zhang, S. Y.; He, G.; Zhao, Y. S.; Wright, K.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313.
[59] Xie, Y. J.; Yang, Y. Z.; Huang, L. H.; Zhang, X. B.; Zhang, Y. H. Org. Lett. 2012, 5, 1238.
[60] Cheng, T.; Yin, W. Y.; Zhang, Y.; Zhang, Y. N.; Huang, Y. Org. Biomol. Chem. 2014, 12, 1405.
[61] Rit, R. K.; Yadav, M. R.; Sahoo, A. K. Org. Lett. 2012, 14, 3724.
[62] Novák, P.; Correa, A.; Donaire, J. G.; Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236.
[63] Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70.
[64] Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095.
[65] Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 7247.
[66] Kasuya, S.; Kamijo, S.; Inoue, M. Org. Lett. 2009, 11, 3630.
/
〈 |
|
〉 |