溶血磷脂酰基转移机理及有效影响因子研究
收稿日期: 2014-04-12
修回日期: 2014-07-14
网络出版日期: 2014-08-26
基金资助
国家自然科学基金(No.31301502)、河南省重大攻关(No.132102110066)和河南省农业科学院优秀青年科技基金(No.2013YQ25)资助项目.
Mechanism and Effective Factors of Acyl Migration of Lysophospholipid
Received date: 2014-04-12
Revised date: 2014-07-14
Online published: 2014-08-26
Supported by
Project supported by the National Natural Science Foundation of China (No. 31301502), the Key Science and Technology Program of Henan Province (No. 132102110066) and the Special Foundation for Young Scientists of Henan Academy of Agricultural Sciences (No. 2013YQ25).
通过定量13C NMR证明了磷脂酶A1具有水解磷脂Sn-1位酰基脂肪酸的专一性, 证实了Sn-2-溶血磷脂酰胆碱(Sn-2-lysophosphatidylcholine, Sn-2-LPC)的Sn-2位酰基会通过酰基转移到Sn-1位生成Sn-1-溶血磷脂酰胆碱(Sn-2-lysophosphatidylcholine, Sn-1-LPC)现象的存在, 从而为磷脂酶A1催化磷脂酰胆碱(Phosphatidylcholine, PC)的酶解液中存在Sn-2-LPC, Sn-1-LPC和甘油磷脂酰胆碱(L-alpha glycerylphosphorylcholine, GPC)的现象提供理论依据. 依据单甘酯自动酰基转移机理, 推测出在酸、碱条件下Sn-2-LPC的自动酰基转移机理, 并探讨溶液极性、pH、温度、底物浓度和反应时间等影响因子对酰基转移的影响规律. 降低酰基转移的条件为: 异丙醇溶剂、pH 7~8、温度<35 ℃、合适的底物浓度、缩短反应时间. 本研究为合成酰基磷脂混合物, 验证磷脂酶专一性, 以及解释产生混合酰基磷脂的生物合成途径(溶血磷脂中间体)提供了数据支撑.
张康逸 , 张丽霞 , 屈凌波 , 王兴国 , 刘元法 . 溶血磷脂酰基转移机理及有效影响因子研究[J]. 有机化学, 2014 , 34(12) : 2529 -2536 . DOI: 10.6023/cjoc201404019
The specificity hydrolysis Sn-1 fatty acyl of phospholipids by phospholipase A1 and the phenomenon of acyl migration in Sn-2-lysophosphatidylcholine (Sn-2-LPC) were demonstrated through 13C NMR, which provided fundamental basis for enzymatic reaction solution of phosphatidylcholine (PC) including Sn-1-lysophosphatidylcholine, Sn-2-LPC, and L-α-glycerylphosphorylcholine. Based on the automatic acyl migration mechanism of monoglycerides, the automatic acyl migration mechanism of Sn-2-LPC was speculated in the acid condition or alkali condition. The effects of reaction parameters on the acyl migration were then explored, including the polarity of the solution, pH, temperature, substrate concentration, and reaction time. The conditions of low acyl migration were as follows: isopropanol solvent, pH 7~8, temperature<35 ℃, defined substrate concentration, shorten reaction time. These results contributed to a data support for the synthesis of acyl mixture of phospholipids, detection of specific phospholipase A1, and the explanation of biosynthetic pathway (lysophospholipid intermediate) of the production mixed phospholipid.
Key words: lysophospholipid; acyl migration; mechanism; effective factors
[1] Hu, M.-P.; Zhang, D.-J.; Zhang A.-W.; Lu, B.-X.; Li, J.-Y.; Huai, B.-D. China Oils Fats 2012, 37(11), 61 (in Chinese). (胡铭畔, 张东杰, 张爱武, 鹿保鑫, 李靖元, 怀宝东, 中国油脂, 2012, 37(11), 61.)
[2] Peng, L.-F.; Xu, X.-B.; Mu, H.-L.; Hoy, C.; Adler-Nissen, J. Enzyme Microb. Technol. 2002, 31(4), 523.
[3] Saubhi, S.; Wang, Z.; Russell, T.; Xu. Y. Semin. Cell Dev. Biol. 2004, 15(5), 503.
[4] Tigyi, G. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2013, 1831, 1.
[5] Raynal, P.; Montagner, A.; Dance, M.; Yart, A. Pathol. Biol. 2005, 53(1), 57.
[6] Slizyte, R.; Rustad, T.; Storro, I. Process Biochem. 2005, 40, 3680.
[7] Kie?bowicz, G.; G?adkowski, W.; Chojnacka, A.; Wawrzeńczyk, C. Food Chem. 2012, 135(4), 2542.
[8] Ponpipom, M. M.; Bugianesi, R. L. J. Lipid Res. 1980, 21(1), 136.
[9] Larrabee, A. L. Biochemistry 1979, 18(5), 3321.
[10] Liu, N.; Wang, Y.; Zhao, Q.-Z.; Cui, C.; Fu, M.; Zhao, M. Food Chem. 2012, 134(1), 301.
[11] Kie?bowicz, G.; Smuga, D.; G?adkowski, W.; Chojnacka, A.; Wawrzeńczyk, C. Talanta 2012, 94, 22.
[12] Dos Santos, J. C. S.; Garcia-Galan, C.; Rodrigues, R. C.; de Sant Ana, H. B.; Goncalves, L. R. B.; Fermandez-Lafuente, R. Enzyme Microb. Technol. 2014, 60, 1.
[13] Gupta, C. M.; Radhakrishnan, R.; Khorana, H. G. Proc. Natl. Acad. Sci. U. S. A. 1977, 74(10), 4315.
[14] Warner, T. G.; Benson, A. A. J. Lipid Res. 1977, 18(4), 548.
[15] Van Den Bosch, H.; Van Golde, L. M. G.; Slotboom, A. J.; Van Deenen, L. L. M. Biochim. Biophys. Acta 1968, 152(4), 694.
[16] Homma, H.; Nishijima, M.; Kobayashi, T.; Okuyama, H.; Nojima, S. Biochim. Biophys. Acta 1981, 663(1), 1.
[17] Fischer, E. Bet. Dtsch. Chem. Ges. 1920, 53(9), 1621.
[18] Serdarevich, B. J. Am. Oil Chem. Soc. 1967, 44(7), 381.
[19] Richmond, G. S.; Smith, T. K. Int. J. Mol. Sci. 2011, 12, 588.
[20] Ekroos, K.; Ejsing, C. S.; Bahr, U.; Karas, M.; Simons, K.; Shevchenko, A. J. Lipid Res. 2003, 44(8), 2182.
[21] Vikbjerg, A. F.; Mu, H.; Xu, X. J. Biotechnol. 2007, 128(3), 545.
[22] Poisson, L.; Devos, M.; Godet, S.; Ergan, F.; Pencrea?h, G. Biotechnol. Lett. 2009, 31(5), 743.
[23] Pliickthun, A.; Dennis, E. A. Biochemistry 1982, 21(8), 1743.
[24] Yang, T.; Fruekilde, M. B.; Xu, X. Food. Chem. 2005, 92(1), 101.
[25] Kodali, D. R.; Tercyak, A.; Fahey, D. A.; Small, D. M. Chem. Phys. Lipids 1990, 52(3~4), 163.
[26] Zhang, K. Y.; Liu, Y. F.; Wang, X. G. Eur. J. Lipid Sci. Technol. 2012, 114, 1254.
/
| 〈 |
|
〉 |