研究论文

甲硅烷基(硅烯)钌配合物中甲硅烷基甲氧基化反应机理的理论研究

  • 周莉 ,
  • 李阳 ,
  • 林芙蓉 ,
  • 田迪英 ,
  • 雷群芳 ,
  • 方文军 ,
  • 谢湖均
展开
  • a 浙江工商大学应用化学系 杭州 310018;
    b 浙江大学化学系 杭州 310028

收稿日期: 2014-10-16

  修回日期: 2014-12-10

  网络出版日期: 2015-01-05

基金资助

国家自然科学基金(No. 21203166)和食品科学与工程浙江省重中之重一级学科开放基金(No. JYTsp2014111)资助项目.

Reaction Mechanism for the Alkoxylation of a Silyl Ligand in the Silyl- (silylene)ruthenium Complex: A Density Functional Theory Study

  • Zhou Li ,
  • Li Yang ,
  • Lin Furong ,
  • Tian Diying ,
  • Lei Qunfang ,
  • Fang Wenjun ,
  • Xie Hujun
Expand
  • a Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018;
    b Department of Chemistry, Zhejiang University, Hangzhou 310028

Received date: 2014-10-16

  Revised date: 2014-12-10

  Online published: 2015-01-05

Supported by

Project supported by the National Natural Science Foundation of China (No. 21203166) and the Food Science and Engineering of Most Important Discipline of Zhejiang Province (No. JYTsp2014111).

摘要

采用密度泛函理论(DFT), 我们研究了甲硅烷基(硅烯)钌配合物Cp*Ru(CO)(=SiMes2)SiMe3与甲醇发生反应的机理. 整个反应机理包含以下四个步骤: (1) Ru=Si双键和甲醇发生1,2加成反应, 随后通过消除Mes2Si(OMe)H生成Cp*Ru(CO)SiMe3; (2)甲硅烷基配体上的甲基以1,2-甲基的迁移方式从硅原子转移到Ru原子上, 并与甲醇发生1,2加成反应, 生成的甲烷脱离后产生Cp*Ru(CO)Si(OMe)Me2; (3)重复步骤(2)两次, 得到甲氧基化的产物Cp*Ru(CO)Si(OMe)3; (4)异腈配位Ru原子后得到最终的产物Cp*Ru(CO)(CNt-Bu)Si(OMe)3. 甲醇和Ru=Si双键的1,2加成是整个反应的决速步骤, 自由能势垒为35.3 kcal/mol. 此外, 还研究了甲硅烷基(锗烯)钌配合物与甲醇的反应机理, 相比硅烯配合物, 锗烯配合物决速步的能垒相对较低, 为31.8 kcal/mol.

本文引用格式

周莉 , 李阳 , 林芙蓉 , 田迪英 , 雷群芳 , 方文军 , 谢湖均 . 甲硅烷基(硅烯)钌配合物中甲硅烷基甲氧基化反应机理的理论研究[J]. 有机化学, 2015 , 35(3) : 698 -704 . DOI: 10.6023/cjoc201410023

Abstract

The mechanism for the reaction of a silyl(silylene) ruthenium complex Cp*Ru(CO)(=SiMes2)SiMe3 with methanol was investigated via the density functional theory (DFT) calculations. The mechanism includes four steps. (1) The reaction initiates via the 1,2-addition of methanol to the Ru=Si bond, followed by Mes2Si(OMe)H elimination to give Cp*Ru(CO)SiMe3; (2) A methyl group of the silyl ligand migrates to Ru center via 1,2-Me migration, together with 1,2-addition of methanol, which is followed by the CH4 release to form Cp*Ru(CO)Si(OMe)Me2; (3) Step (2) repeats twice to give the fully alkoxylated product Cp*Ru(CO)Si(OMe)3. (4) Coordination of isonitrile affords final product Cp*Ru(CO)(CNtBu)Si(OMe)3. The first step involving the 1,2-addition of methanol to the Ru=Si double bond is the rate-determining step for the whole reaction with a free energy barrier of 35.3 kcal/mol. The mechanism for the reaction of a silyl(germylene)ruthenium complex with methanol was also considered. The rate-determining step has relatively lower barrier of 31.8 kcal/mol in contrast to the silyl(silylene) ruthenium complex.

参考文献

[1] Straus, D. A.; Zhang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Am. Chem. Soc. 1990, 112, 2673.
[2] Straus, D. A.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 5872.
[3] Waterman, R.; Hayes, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712.
[4] (a) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2008, 130, 9226. (b) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 11161. (c) Calimano, E.; Tilley, T. D. Organometallics 2010, 29, 1680. (d) Fasulo, M. E.; Glaser, P. B.; Tilley, T. D. Organometallics 2011, 30, 5524. (e) Fasulo, M. E.; Tilley, T. D. Organometallics 2012, 31, 5049. (f) Fasulo, M. E.; Lipke, M. C.; Tilley, T. D. Chem. Sci. 2013, 4, 3882.
[5] Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. J. Am. Chem. Soc. 1988, 110, 4092.
[6] (a) Ogino, H. Chem. Rec. 2002, 2, 291. (b) Okazaki, M.; Tobita, H.; Ogino, H. Dalton Trans. 2003, 493.
[7] Watanabe, T.; Hashimoto, H.; Tobita, H. Angew. Chem., Int. Ed. 2004, 43, 218.
[8] Watanabe, T.; Hashimoto, H.; Tobita, H. J. Am. Chem. Soc. 2006, 128, 2176.
[9] Watanabe, T.; Hashimoto, H.; Tobita, H. J. Am. Chem. Soc. 2007, 129, 11338.
[10] Ochiai, M.; Hashimoto, H.; Tobita, H. Organometallics 2012, 31, 527.
[11] Xie, H.; Lin, Z. Organometallics 2014, 33, 892.
[12] Hashimoto, H.; Sato, J.; Tobita, H. Organometallics 2009, 28, 3963.
[13] (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[14] (a) Arnold Jr, F. P. Organometallics 1999, 18, 4800. (b) Zhang, X. H.; Chung, L. W.; Lin, Z.; Wu, Y. D. J. Org. Chem. 2008, 73, 820. (c) Chung, L. W.; Wu, Y.-D.; Trost, B. M.; Ball, Z. T. A. J. Am. Chem. Soc. 2003, 125, 11578.
[15] (a) Xie, H.; Lin, F.; Yang, L.; Chen, X.; Ye, X.; Tian, X.; Lei, Q.; Fang, W. J. Organomet. Chem. 2013, 745-746, 417. (b) Xie, H.; Lin, F.; Lei, Q.; Fang, W. Organometallics 2013, 32, 6957. (c) Ye, X.; Yang, L.; Li, Y.; Huang, J.; Zhou, L.; Lei, Q.; Fang, W.; Xie, H. Eur. J. Inorg. Chem. 2014, 1502.
[16] (a) Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A 2001, 105, 8111. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
[17] Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237.
[18] Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
[19] (a) Fukui, K. J. Phys. Chem. 1970, 74, 4161. (b) Fukui, K. Acc. Chem. Res. 1981, 14, 363.
[20] (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. (b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736. (c) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
[21] (a) Barone V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
[22] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.

文章导航

/