研究论文

烯丙型醇与取代肼的对映专一性烯丙型烷基化反应

  • 徐靖坤 ,
  • 谷永红 ,
  • 田仕凯
展开
  • 中国科学技术大学化学系 合肥 230026

收稿日期: 2014-12-29

  修回日期: 2015-01-17

  网络出版日期: 2015-01-20

基金资助

国家自然科学基金(Nos. 21472178和21232007)、国家重点基础研究发展计划(No. 2014CB931800)和安徽省自然科学基金(No. 1408085MB24)资助项目.

Enantiospecific Allylic Alkylation of Substituted Hydrazines with Allylic Alcohols

  • Xu Jing-Kun ,
  • Gu Yonghong ,
  • Tian Shi-Kai
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2014-12-29

  Revised date: 2015-01-17

  Online published: 2015-01-20

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21472178 and 21232007), the National Key Basic Research Program of China (No. 2014CB931800), and the Natural Science Foundation of Anhui Province of China (No. 1408085MB24).

摘要

发展了首例烯丙型醇与取代肼的对映专一性烯丙型烷基化反应. 在钯/外消旋2,2'-双(二苯膦基)-1,1'-联萘(BINAP)/硼酸的催化下, 一系列高度对映富集的烯丙型醇与取代肼于室温进行烯丙型烷基化反应, 具有高度的区域选择性, 立体构型的保留率大于95%, 适于合成高对映纯度的烯丙型肼. 另外, 该反应的唯一副产物是水, 对环境友好.

本文引用格式

徐靖坤 , 谷永红 , 田仕凯 . 烯丙型醇与取代肼的对映专一性烯丙型烷基化反应[J]. 有机化学, 2015 , 35(3) : 618 -624 . DOI: 10.6023/cjoc201412049

Abstract

Unprecedented enantiospecific allylic alkylation of substituted hydrazines with allylic alcohols has been developed. A range of substituted hydrazines underwent palladium/racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP)/boric acid-catalyzed allylic alkylation with highly enantioenriched allylic alcohols at room temperature and the reaction proceeded in a highly regioselective fashion with greater than 95% retention of configuration to afford allylic hydrazines with high enantiopurity. Moreover, only water was generated as an environmentally benign byproduct.

参考文献

[1] For reviews, see: (a) Tsuji, J. Acc. Chem. Res. 1969, 2, 144. (b) Trost, B. M. Tetrahedron 1977, 33, 2615. (c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (d) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (e) Kazmaier, U.; Pohlman, M. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Eds.: de Meijere, A.; Diederich, F., Wiley-VCH, Weinheim, 2004, p. 531.
[2] For reviews, see: (a) Muzart, J. Tetrahedron 2005, 61, 4179. (b) Bandini, M. Angew. Chem., Int. Ed. 2011, 50, 994. (c) Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467. (d) Bandini, M.; Cera, G.; Chiarucci, M. Synthesis 2012, 44, 504.
[3] (a) Ye, J.; Zhao, J.; Xu, J.; Mao, Y.; Zhang, Y. J. Chem. Commun. 2013, 49, 9761. (b) Wu, H.-B.; Ma, X.-T.; Tian, S.-K. Chem. Commun. 2014, 50, 219.
[4] (a) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968. (b) Roggen, M.; Carreira, E. M. J. Am. Chem. Soc. 2010, 132, 11917. (c) Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2010, 12, 1184. For intramolecular substitution, see: (d) Kawai, N.; Abe, R.; Uenishi, J. Tetrahedron Lett. 2009, 50, 6580. (e) Hande, S. M.; Kawai, N.; Uenishi, J. J. Org. Chem. 2009, 74, 244. (f) Kawai, N.; Abe, R.; Matsuda, M.; Uenishi, J. J. Org. Chem. 2011, 76, 2102. (g) Mukherjee, P.; Widenhoefer, R. A. Org. Lett. 2011, 13, 1334. (h) Mukherjee, P.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012, 51, 1405.
[5] (a) Vikhe, Y. S.; Hande, S. M.; Kawai, N.; Uenishi, J. J. Org. Chem. 2009, 74, 5174. (b) Mukherjee, P.; Widenhoefer, R. A. Chem.-Eur. J. 2013, 19, 3437. For intramolecular substitution, see: (c) Uenishi, J.; Ohmi, M.; Ueda, A. Tetrahedronn: Asymmetry 2005, 16, 1299. (d) Kawai, N.; Lagrange, J.-M.; Ohmi, M.; Uenishi, J. J. Org. Chem. 2006, 71, 4530. (e) Kawai, N.; Lagrange, J.-M.; Uenishi, J. Eur. J. Org. Chem. 2007, 2808. (f) Uenishi, J.; Vikhe, Y. S.; Kawai, N. Chem. Asian J. 2008, 3, 473. (g) Guérinot, A.; Serra-Muns, A.; Bensoussan, C.; Reymond, S.; Cossy, J. Tetrahedron 2011, 67, 5024. (h) Unsworth, W. P.; Stevens, K.; Lamont, S. G.; Robertson, J. Chem. Commun. 2011, 47, 7659. (i) Ghebreghiorgis, T.; Biannic, B.; Kirk, B. H.; Ess, D. H.; Aponick, A. J. Am. Chem. Soc. 2012, 134, 16307. (j) Ghebreghiorgis, T.; Kirk, B. H.; Aponick, A.; Ess, D. H. J. Org. Chem. 2013, 78, 7664.
[6] Ma, X.-T.; Dai, R.-H.; Zhang, J.; Gu, Y.; Tian, S.-K. Adv. Synth. Catal. 2014, 356, 2984.
[7] Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 1890.
[8] Tšupova, S.; Mäeorg, U. Org. Lett. 2013, 15, 3381.
[9] (a) Zhang, R.; Durkin, J. P.; Windsor, W. T. Bioorg. Med. Chem. Lett. 2002, 12, 1005. (b) Raja, A.; Lebbos, J.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2003, 1, 857.
[10] For reviews, see: (a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205. (b) Friestad, G. K. Eur. J. Org. Chem. 2005, 3157.
[11] (a) Strick, B. F.; Mundal, D. A.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 14252. (b) Lutz, K. E.; Thomson, R. J. Angew. Chem., Int. Ed. 2011, 50, 4437. (c) Gutierrez, O.; Strick, B. F.; Thomson, R. J.; Tantillo, D. J. Chem. Sci. 2013, 4, 3997. (d) Reddel, J. C. T.; Lutz, K. E.; Diagne, A. B.; Thomson, R. J. Angew. Chem., Int. Ed. 2014, 53, 1395.
[12] (a) Yamagishi, T.; Ohnuki, M.; Kiyooka, T.; Masui, D.; Sato, K.; Yamaguchi, M. Tetrahedron: Asymmetry 2003, 14, 3275. (b) Kloetzing, R. J.; Knochel, P. Tetrahedron: Asymmetry 2006, 17, 116. (c) Popa, D.; Marcos, R.; Sayalero, S.; Vidal-Ferran, A.; Pericàs, M. A. Adv. Synth. Catal. 2009, 351, 1539. (d) Yuan, H.; Zhou, Z.; Xiao, J.; Liang, L.; Dai, L. Tetrahedron: Asymmetry 2010, 21, 1874.
[13] (a) Li, H.-H.; Dong, D.-J.; Tian, S.-K. Eur. J. Org. Chem. 2008, 3623. (b) Li, H.-H.; Jin, Y.-H.; Wang, J.-Q.; Tian, S.-K. Org. Biomol. Chem. 2009, 7, 3219. (c) Yang, C.-F.; Shen, C.; Li, H.-H.; Tian, S.-K. Chin. Sci. Bull. 2012, 57, 2377. (d) Tian, Y.; Sui, Y.; Gu, Y.; Tian, S.-K. Adv. Synth. Catal. 2012, 354, 3475. (e) Li, M.-B.; Wang, Y.; Tian, S.-K. Angew. Chem., Int. Ed. 2012, 51, 2968. (f) Wu, X.-S.; Chen, Y.; Li, M.-B.; Zhou, M.-G.; Tian, S.-K. J. Am. Chem. Soc. 2012, 134, 14694. (g) Li, M.-B.; Li, H.; Wang, J.; Liu, C.-R.; Tian, S.-K. Chem. Commun. 2013, 49, 8190. (h) Ma, X.-T.; Wang, Y.; Dai, R.-H.; Liu, C.-R.; Tian, S.-K. J. Org. Chem. 2013, 78, 11071. (i) Wu, X.-S.; Zhou, M.-G.; Chen, Y.; Tian, S.-K. Asian J. Org. Chem. 2014, 3, 711. (j) Wang, T.-T.; Wang, F.-X.; Yang, F.-L.; Tian, S.-K. Chem. Commun. 2014, 50, 3802. (k) Zhou, M.-G.; Zhang, W.-Z.; Tian, S.-K. Chem. Commun. 2014, 50, 14531. (l) Wang, Y.; Li, M.; Ma, X.; Liu, C.; Gu, Y.; Tian, S.-K. Chin. J. Chem. 2014, 32, 741.
[14] Wang, Y.; Xu, J.-K.; Gu, Y.; Tian, S.-K. Org. Chem. Front. 2014, 1, 812.
[15] (a) Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973. (b) Wang, J.; Chen, J.; Kee, C. W.; Tan, C.-H. Angew. Chem., Int. Ed. 2012, 51, 2382.
[16] (a) Yang, F.-L.; Ma, X.-T.; Tian, S.-K. Chem.-Eur. J. 2012, 18, 1582. (b) Yang, F.-L.; Tian, S.-K. Angew. Chem., Int. Ed. 2013, 52, 4929. (c) Su, Y.-H.; Wu, Z.; Tian, S.-K. Chem. Commun. 2013, 49, 6528. (d) Zhang, Y.-G.; Liu, X.-L.; He, Z.-Y.; Li, X.-M.; Kang, H.-J.; Tian, S.-K. Chem.-Eur. J. 2014, 20, 2765. (e) Yang, F.-L.; Wang, F.-X.; Wang, T.-T.; Wang, Y.-J.; Tian, S.-K. Chem. Commun. 2014, 50, 2111.
[17] Electrospray ionization (ESI) mass spectrometric analysis of the reaction mixture permitted us to assign intermediate 6 according to the high resolution mass data. HRMS (ESI) calcd for C17H18N2O2SNa (M+Na)+ 337.0981, found 337.0987.
[18] Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada. Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237.
[19] (a) Mäeorg, U.; Bredihhin, A. Org. Lett. 2007, 9, 4975. (b) Zhang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Eur. J. Med. Chem. 2012, 54, 33.

文章导航

/