研究论文

铑催化苯醌磺酰化反应合成磺酰基醌类衍生物

  • 王大伟 ,
  • 余晓丽 ,
  • 葛冰洋 ,
  • 苗红艳 ,
  • 丁玉强
展开
  • 江南大学化学与材料工程学院 教育部食品胶体与生物技术重点实验室 无锡 214122

收稿日期: 2014-12-29

  修回日期: 2015-01-26

  网络出版日期: 2015-01-28

基金资助

国家自然科学基金(No. 21401080)资助项目.

Synthesis of Sulfonyl Quinone Derivatives by Rh-Catalyzed Sulfonylation of Quinones

  • Wang Dawei ,
  • Yu Xiaoli ,
  • Ge Bingyang ,
  • Miao Hongyan ,
  • Ding Yuqiang
Expand
  • Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122

Received date: 2014-12-29

  Revised date: 2015-01-26

  Online published: 2015-01-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 21401080).

摘要

报道了一种过渡金属铑催化的醌类与磺酰氯化合物的偶联反应, 实现了醌类的磺酰化反应. 在温和的反应条件下, 以较高的产率成功合成了一系列具有生物活性的磺酰基醌类化合物, 此反应不仅对苯醌具有较好的适应性, 对于萘醌底物也能取得较高的产率, 并提出了初步的反应机理.

本文引用格式

王大伟 , 余晓丽 , 葛冰洋 , 苗红艳 , 丁玉强 . 铑催化苯醌磺酰化反应合成磺酰基醌类衍生物[J]. 有机化学, 2015 , 35(3) : 676 -680 . DOI: 10.6023/cjoc201412047

Abstract

The rhodium-catalyzed sulfonylation reaction of quinones with sulfonyl chloride compounds was developed, which provides an efficient and mild method of the synthesis of biologically active sulfonyl quinones with high yields. This methodology is also efficient for the coupling of naphthoquinone with sulfonyl chlorides. The possible reaction mechanism was also proposed.

参考文献

[1] Mkhalid, I. A.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
[2] Huang, C.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 12406.
[3] Huang, C.; Ghavtadze, N.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 17630.
[4] Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250.
[5] Dong, J.; Long, Z.; Song, F.; Wu, N.; Guo, Q.; Lan, J.; You, J. Angew. Chem. Int. Ed. 2013, 52, 580.
[6] Yu, D.-G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
[7] Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651.
[8] Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996.
[9] Yang, S.; Sun, C.; Fang, Z.; Li, B.; Li, Y.; Shi, Z. Angew. Chem., Int. Ed. 2008, 47, 1473.
[10] Babula, P.; Mikelova, R.; Kizek, R.; Havel, L.; Sladky, Z. Ceska Slovens. Farm. 2006, 55, 151.
[11] Miller, R. F.; Huang, S. J. Antibiot. 1995, 48, 520.
[12] Zhang, B.; Salituro, G.; Szalkowski, D.; Li, Z.; Zhang, Y.; Royo, I.; Vitella, D.; Diez, M. T.; Pelaez, F.; Ruby, C.; Kendall, R. L.; Mao, X.; Griffin, P.; Calaycay, J.; Zierath, J. R.; Heck, J. V.; Smith, R. G.; Moller, D. E. Science 1999, 284, 974.
[13] Alhamadsheh, M.; Waters, N.; Sachdeva, S.; Lee, P.; Reynolds, K. Bioorg. Med. Chem. Lett. 2008, 18, 6402.
[14] Pirrung, M. C.; Park, K.; Li, Z. Org. Lett. 2001, 33, 65.
[15] Pirrung, M. C.; Deng, L.; Li, Z.; Park, K. J. Org. Chem. 2002, 67, 8374.
[16] Knölker, H.-J.; Fröhner, W.; Reddy, K. R. Synthesis 2002, 557.
[17] Yadav, J. S.; Reddy, B. V. S.; Swamy, T. Tetrahedron Lett. 2003, 44, 9121.
[18] Honraedt, A.; Callonnec, F. L.; Grognec, E. L.; Fernandez, V.; Felpin, F.-X. J. Org. Chem. 2013, 78, 4604.
[19] Zhang, H.-B.; Liu, L.; Chen, Y.-J.; Wang, D.; Li, C.-J. Adv. Synth. Catal. 2006, 348, 229.
[20] Miyamura, H.; Shiramizu, M.; Matsubara, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2008, 47, 8093.
[21] Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. Org. Lett. 2011, 13, 5628.
[22] Ilangovan, A.; Saravanakumar, S.; Malayappasamy, S. Org. Lett. 2013, 15, 4968.
[23] Zhang, S.; Song, F.; Zhao, D.; You, J. Chem. Commun. 2013, 49, 4558.
[24] Molina, M. T.; Navarro, C.; Moreno, A.; Csaky, A. G. Org. Lett. 2009, 11, 4938.
[25] Demchuk, O. M.; Pietrusiewicz, K. M. Synlett 2009, 7, 1149.
[26] Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Bel, M. D.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 3292.
[27] Wang, J.; Wang, S.; Wang, G.; Zhang, J.; Yu, X.-Q. Chem. Commun. 2012, 48, 11769.
[28] Singh, P. P.; Aithagani, S. K.; Yadav, M.; Singh, V. P.; Vishwakarma, R. A. J. Org. Chem. 2013, 78, 2639.
[29] Komeyama, K.; Kashihara, T.; Takaki, K. Tetrahedron Lett. 2013, 54, 1084.
[30] Deb, A.; Manna, S.; Maji, A.; Dutta, U.; Maiti, D. Eur. J. Org. Chem. 2013, 5251.
[31] Revill, W. P.; Bibb, M. J.; Scheu, A. K.; Kieser, H. J.; Hopwood, D. A. J. Bacteriol. 2001, 183, 3526.
[32] Carreno, M. C.; Ruano, J. L. G.; Urbano, A.; Remor, C. Z.; Arroyo, Y. J. J. Org. Chem. 2000, 65, 453.
[33] Kraus, G. A.; Kim, I. J.; J. Org. Chem. 2003, 68, 4517.
[34] Wang, D.; Ge, B.; Li, L.; Shan, J.; Ding, Y. J. Org. Chem. 2014, 79, 8607.
[35] Ge, B.; Wang, D.; Dong, W.; Ma, P.; Li, Y.; Ding, Y. Tetrahedron Lett. 2014, 55, 5443.
[36] Ouyang, K.; Xi, Z. Acta Chim. Sinica 2013, 71, 13.
[37] Qing, B.; Cui, C. Acta Chim. Sinica 2015, DOI: 10.6023/ A14120828.

文章导航

/