研究论文

对位-二取代氮苄叉苯胺还原电位的取代基效应

  • 曹晨忠 ,
  • 毕亚坤 ,
  • 曹朝暾
展开
  • 湖南科技大学化学化工学院 理论有机化学与功能分子教育部重点实验室 分子构效关系湖南省普通高校重点实验室 湘潭 411201

收稿日期: 2014-11-25

  修回日期: 2014-12-16

  网络出版日期: 2015-02-02

基金资助

国家自然科学基金(No. 21272063)、湖南省教育厅科研(No. 14C0466)及湖南省自然科学基金(No. 14JJ3112)资助项目.

Effect of Substituents on Reduction Potential of Para-disubstituted N-Benzylidenebenzenamine Derivatives

  • Cao Chenzhong ,
  • Bi Yakun ,
  • Cao Chaotun
Expand
  • Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201

Received date: 2014-11-25

  Revised date: 2014-12-16

  Online published: 2015-02-02

Supported by

Project supported by the National Natural Science Foundation of China (No. 21272063), the Scientific Research Fund of Hunan Provincial Education Department (No. 14C0466), and the Natural Science Foundation of Hunan Province (No. 14JJ3112).

摘要

合成52种4,4'-二取代氮苄叉苯胺衍生物p-XPhCH=NC6H4Y-p作为模型化合物, 系统地研究了取代基效应对其还原电位ERed的影响规律. 通过研究表明该类化合物的ERed与桥连键C=N的13C NMR化学位移δC (C=N)没有线性关系, ERedδC(C=N)两者的影响因素有较大差别, 仅用Hammett取代基常数不能很好地表达ERed的变化规律. 影响ERed的主要因素有: 取代基X的场/诱导效应、取代基X和Y的共轭效应, 此外取代基X的激发态取代基参数也有重要影响. 上述4个参数与52种化合物的ERed有良好的相关性, 相关系数为0.9756, 标准偏差为0.052 V. 在这4个影响因素中, 基团X的场/诱导效应、共轭效应和激发态取代基效应对ERed改变的贡献都比较大, 而基团Y的共轭效应对还原电位ERed改变的贡献相对较小, 但不能忽略它.

本文引用格式

曹晨忠 , 毕亚坤 , 曹朝暾 . 对位-二取代氮苄叉苯胺还原电位的取代基效应[J]. 有机化学, 2015 , 35(6) : 1302 -1309 . DOI: 10.6023/cjoc201411037

Abstract

52 samples of 4,4'-disubstituted N-benzylidenebenzenamine (p-XPhCH=NC6H4Y-p) derivatives were synthesized, the effect of substituents on the reduction potential ERed of these compounds was systematically investigated. The result shows that there is not linear relation between their ERed and the chemical shift δC(C=N) of the 13C NMR of C=N bridge bond in the molecules. The factors affecting ERed are obvious different from that affecting on δC(C=N), and the change regularity of ERed can not be expressed well by only employing Hammett substituent constant. The main factors affecting the ERed are the field/inductive effect of substituent X, the conjugative effects of substituents X and Y, and the excited-state substituent constant of substituent X plays an important role of influence on ERed. Above four parameters have good correlations with the ERed of the 52 samples of compounds, the correlation coefficient of the correlation equation is 0.9756, and the standard derivation is 0.052 V. Among the four factors, the contributions of the field/inductive effect, the conjugative effect and the excited-state substituent constant of group X to the changes of ERed are relative large, while the contribution of the conjugative effect of group Y is relative small, and can not be ignored.

参考文献

[1] Fang, Z.-J.; Cao, C.-Z.; Wu, W. H.; Wang, L. J. Phys. Org. Chem. 2013, 26, 249.
[2] Cao, C.-Z.; Chen, G.-F.; Yin, Z.-Q. J. Phys. Org. Chem. 2008, 21, 808.
[3] Cao, C.-Z.; Lu, B.-T.; Chen, G.-F. J. Phys. Org. Chem. 2011, 24, 335.
[4] Chen, G.-F.; Cao, C.-Z.; Lu, B.-T.; Sheng, B. J. Phys. Org. Chem. 2012, 25, 327.
[5] Paspalaev, E.; Pavlova, A.; Acad, C. R. Acad. Bulg. Sci. 1965, 18, 533.
[6] Dmitrieva, V. N.; Kononenko, L. V.; Bezuglyi, V. D. Teor. Eksp. Khim. 1965, 1, 456.
[7] Scott, J. M. V.; Jura, W. H. Can. J. Chem. 1967, 45, 2375.
[8] Bezuglyi, V. D.; Kononenko, L. V.; Forunova, A. F.; Dmitrieva, V. N.; Timan, B. L. Zh. Obshch. Khim. 1969, 39, 1680.
[9] Dmitrieva, V. N.; Rozanel’skaya, N. A.; Krasovitskii, B. M.; Stepanov, B. I.; Bezuglyi, V. D. Zh. Obshch. Khim. 1971, 41, 60.
[10] Zhu, X.-Q.; Liu, Q.-Y.; Chen, Q.; Lian. R.-M. J. Org. Chem. 2010, 75, 789.
[11] Sauro, V. A.; Workentin, M. S. J. Org. Chem. 2001, 66, 831.
[12] Celik, H.; Ekmekci, G.; Ludvik, J.; Picha, J.; Zuman, P. J. Phys. Chem. B 2006, 110, 6785.
[13] Ucar, M.; Polat, K.; Aksu, M. L.; Unver, H. Anal. Sci. 2004, 20, 1179.
[14] Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96.
[15] Hamer, G. K.; Peat, I. R.; Reynol, W. F. Can. J. Chem. 1973, 51, 897.
[16] Inamoto, N.; Masuda, S. Can. J. Chem. 1967, 45, 1185.
[17] Charton, M. Can. J. Chem. 1970, 48, 1748.
[18] Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
[19] Neuvonen, H.; Neuvonen, K.; F. Fülöp. J. Org. Chem. 2006, 71, 3141~3148.
[20] Shen, T.; Yuan, Z.-L.; Xu, H.-J. Acta Chim. Sinica 1985, 43, 865 (in Chinese). (沈涛, 袁振利, 许慧君, 化学学报, 1985, 43, 865.)
[21] Needham, D. E.; Wei, I. C.; Seybold, P. G. J. Am. Chem. Soc. 1988, 110, 4186.
[22] Liu, F.-P.; Liang, Y.-Z.; Cao, C.-Z. Talanta 2007, 72, 1307.
[23] Banks, R. E.; DuBoisson, R. A.; Pritchard, R. G.; Tipping, A. E. Acta Crystallogr., Sect. C 1995, 51, 1470.
[24] Herrera, R.; Nagarajan, A.; Morales, M. A.; Mendez, F.; Jimenez-Vazquez, H. A.; Zepeda, L.G.; Tamariz , J. J. Org. Chem. 2001, 66, 1252.
[25] Vijayalakshmi, L.; Parthasarathi, V.; Manishanker, P. Acta Crystallogr., Sect. C 1997, 53, 1343.

文章导航

/