氯化两面针碱合成方法的改进
收稿日期: 2014-12-20
修回日期: 2015-01-28
网络出版日期: 2015-02-10
基金资助
国家自然科学基金(81230090)、上海市重点学科建设(No. B906)资助项目.
Process Improvement on the Synthesis of Nitidine Chloride
Received date: 2014-12-20
Revised date: 2015-01-28
Online published: 2015-02-10
Supported by
Project supported by the NSFC (No. 81230090), the Shanghai Leading Academic Discipline Project (No. B906).
以6-溴-3,4-二甲氧基苯甲醛和6,7-亚甲二氧基-1-萘胺为起始原料, 经还原胺化、分子内Heck偶联、氧化芳构化、甲基化以及离子交换等五步反应, 完成了氯化两面针碱的合成, 并对关键步骤分子内Heck偶联反应条件进行了探索, 结果表明该偶联反应在醋酸钯、三(邻甲苯基)膦和N,N'-二甲基甲酰胺体系中反应效果最佳, 收率显著提高. 该优化条件为结构类似苯并[c]菲啶类生物碱母核结构的构建提供了借鉴.
关键词: 氯化两面针碱; 分子内Heck偶联反应; 合成改进
许旭升 , 刘志千 , 邵文浩 , 叶霁 , 孙青龑 , 何薇薇 , 张卫东 . 氯化两面针碱合成方法的改进[J]. 有机化学, 2015 , 35(6) : 1353 -1356 . DOI: 10.6023/cjoc201412036
Nitidine chloride was synthesized via reductive amination, intramolecular Heck coupling reaction, aromatization, methlyation and ion exchange, using 6-bromine-3,4-dimethoxybenzaldehyde and 6,7-methylenedioy-1-naphthylamine as starting material. The key intramolecular Heck coupling reaction was optimized, and acetic acid palladium(II) [Pd(OAc)2], tris(2-methylphenyl)phosphine [P(o-tol)3] and N,N-dimethylformamide (DMF) system was confirmed as the most efficient conditions. The total yield was increased significantly, and the optimal conditions may also be applied to the synthesis of other benzo[c]phenanthridine alkaloid.
Key words: nitidine chloride; intramolecular Heck reaction; synthesis
[1] Poeta, M. D.; Chen, S. F.; Hoff, D. C.; Dykstra, C. C.; Wani, M. C.; Manikumar, G.; Heitman, J.; Wall, M. E.; Perpect, J. R. Agents Chemother. 1999, 43, 2862.
[2] Hu, J.; Zhang, W. D.; Liu, R. H.; Zhang, C.; Shen, Y. H.; Li, H. L.; Liang, M.J.; Xu, X. K.Chem. Biodiversity 2006, 3, 990.
[3] Gatto, B.; Sanders, M. M.; Yu, C.; Wu, H. Y.; Makhey, D.; LaVoie, E. J.; Liu, L. F. Cancer Res. 1996, 56, 2795.
[4] (a) Gillespie, J. P.; Amoros, L. G.; Stermitz, F. R.; Maestri, G. J. Org. Chem. 1974, 39, 3239. (b) Nakanishi, T.; Suzuki, M.; Mashiba, A.; Ishikawa, K.; Yokotsuka, T. J. Org. Chem. 1998, 63, 4235. (c) Enomoto, T.; Girard, A. L.; Yasui, Y.; Takemoto, Y. J. Org. Chem. 2009, 74, 9158. (d) Larraufie, M.-H.; Derat, E.; Ollivier, F. L.; Lacôte, E.; Malacria, M. Org. Lett. 2010, 12, 5692. (e) Nakamura, H.; Saito, H.; Nanjo, M. Tetrahedron Lett. 2008, 49, 2697.
[5] Cushman, M.; Cheng, L. J. Org. Chem. 1978, 43, 286.
[6] Nakanishi, T.; Suzuki, M. Org. Lett. 1999, 1, 985.
[7] Nakanishi, T.; Suzuki, M.; Mashiba, A.; Ishikawa, K.; Yokotsuka, T. J. Org. Chem. 1998, 63, 4235.
[8] Blanchot, M.; Candito, D. A.; Larnaud, F.; Lautens, M. Org. Lett. 2011, 13, 1486.
[9] Majumdar, K. C.; Chakravorty, S.; De, N. Tetrahedron Lett. 2008, 49, 3419.
[10] (a)Xu, Z.-H.; Pan, S.; Huang, Y.-G. Chin. J. Org. Chem. 2014, 34, 1391 (in Chinese). (徐之涵, 潘燊, 黄焰根, 有机化学, 2014, 34, 1391.) (b) Deng, C.-G.; Li, S.-L.; Liu, X.-W.; Du, H.-G. Chin. J. Org. Chem. 2013, 33, 1741 (in Chinese). (邓聪迩, 李顺来, 刘祥伟, 杜洪光, 有机化学, 2013, 33, 1741.)
[11] Ramani, P.; Fontana, G. Tetrahedron Lett. 2008, 49, 5262.
[12] Simanek, V.; Preininger, V. Heterocycles 1977, 4, 475.
/
〈 |
|
〉 |