综述与进展

钯催化的苯基取代杂环芳烃的C-H活化反应研究进展

  • 刚芳莉 ,
  • 徐光利 ,
  • 董涛生 ,
  • 杨丽 ,
  • 杜正银
展开
  • 西北师范大学化学化工学院 生态环境相关材料教育部重点实验室 甘肃省高分子材料重点实验室 兰州 730070

收稿日期: 2015-02-11

  修回日期: 2015-03-12

  网络出版日期: 2015-03-13

基金资助

国家自然科学基金(Nos. 20702042, 21262028)及甘肃省自然科学基金(No. 1208RJZA140)资助项目

Advances in Palladium-Catalyzed C-H Activation ofPhenyl Substituted Heterocyclic Aromatics

  • Gang Fangli ,
  • Xu Guangli ,
  • Dong Taosheng ,
  • Yang Li ,
  • Du Zhengyin
Expand
  • Key Laboratory of Eco-Environment Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province & College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2015-02-11

  Revised date: 2015-03-12

  Online published: 2015-03-13

Supported by

Project supported by the Nationl Natural Science Foundation of China (Nos. 20702042, 21262028) and the Natural Science Foundation of Gansu Province (No. 1208RJZA140).

摘要

碳氢键活化官能化反应是直接构建碳碳键、碳杂原子键的原子经济性高的有效途径, 也是近年来有机合成化学研究的热点之一. 从五元杂环芳烃和六元杂环芳烃的角度, 按不同类别的偶联反应方式综述了近十年来钯催化的苯基取代杂环芳烃的C-H活化反应最新进展, 包括苯基吡啶、苯基吡唑、苯基三氮唑等与芳基试剂、酰基试剂、氰化试剂、烷基化试剂的反应, 重点对杂原子的导向机理进行了讨论, 并对今后碳氢活化反应进行了展望.

本文引用格式

刚芳莉 , 徐光利 , 董涛生 , 杨丽 , 杜正银 . 钯催化的苯基取代杂环芳烃的C-H活化反应研究进展[J]. 有机化学, 2015 , 35(7) : 1428 -1440 . DOI: 10.6023/cjoc201502020

Abstract

The catalytic functionalization of carbon-hydrogen bond is the high efficient and atom economical strategy to construct carbon-carbon bond and carbon-heteroatom bond. It is also one of the hot topics in organic synthetic chemistry in recent years. Palladium catalysis in C-H bond activation has some advantages which include high catalytic activity, easily availability and high region-selectivity. In this paper, the latest advances in palladium catalyzed C-H activation of phenyl substituted heterocyclic aromatics in recent ten years are reviewed. The substrates involved phenyl substituted five- and six-membered heterocycle aromatics, which include phenylpyridines, phenylpyrimidines, phenylpyrazoles, phenyltriazoles, phenylthiazoles and phenyloxazoles. The different types of coupling reactions, such as arylation, acylation, cyanation and alkylation reactions are described in detail. The reaction mechanisms are also discussed on emphasis. The summary and prospects about the reaction are proposed.

参考文献

[1] Guo, X. W.; Li, Z. P.; Li, C. J. Prog. Chem. 2010, 22, 1434 (in Chinese). (郭兴伟, 李志平, 李朝军, 化学进展, 2010, 22, 1434.)
[2] (a) Kuhl, N.; Hopkinsom, M. N.; Wenceldelord, J.; Glorius, F. Angew. Chem. 2012, 124, 10382. (b) Kuhl, N.; Hopkinsom, M. N.; Wenceldelord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) Ackermann, L. Chem. Rev. 2011, 111, 1315.(e) Li, C. J. Acc. Chem. Res. 2009, 42, 335.
[3] Zhang, B.; Guan, H. X.; Liu, B.; Shi, B. F. Chin. J. Org. Chem. 2014, 34, 1487 (in Chinese). (张博, 管晗曦, 刘斌, 史炳锋, 有机化学, 2014, 34, 1487.)
[4] Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013, 42, 3253.
[5] Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814.
[6] (a) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588. (b) Gunanathan, C.; Ben, D. Y.; Milstein, D. Science 2007, 317, 790. (c) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
[7] Yu, S. C.; Ma, S. M. Chin. J. Org. Chem. 2002, 22, 307 (in Chinese). (余世超, 麻生明, 有机化学, 2002, 22, 307.)
[8] Wang, Y.; Cheng, G. L.; Cui, X. Chin. J. Org. Chem. 2012, 32, 2018 (in Chinese). (王勇, 程国林, 崔秀, 有机化学, 2012, 32, 2018.)
[9] Yu, H. Z.; Su, S. Q.; Zhang, C.; Dang, Z. M. Chin. J. Org. Chem. 2013, 33, 1628 (in Chinese). (于海珠, 苏生钦, 张弛, 党智敏, 有机化学, 2013, 33, 1628.)
[10] Li, H.; Shi, Z. J. Prog. Chem. 2010, 22, 1414 (in Chinese). (李湖, 施章杰, 化学进展, 2010, 22, 1414.)
[11] Guo, P. F.; Joo, J. M.; Rakshit, S.; Sames, D. J. Am. Chem. Soc. 2011, 133, 16338.
[12] Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234.
[13] Yu, W. Y.; Sit, W. N.; Zhou, Z. Y.; Chan, A. S. Org. Lett. 2009, 11, 3174.
[14] Li, W.; Yin, Z. W.; Jiang, X. Q.; Sun, P. P. J. Org. Chem. 2011, 76, 8543.
[15] Li, M. Z.; Ge, H. B. Org. Lett. 2010, 12, 3464.
[16] Zhou, W.; Li, H. J.; Wang, L. Org. Lett. 2012, 14, 4594.
[17] Han, S.; Sharma, S.; Park, J.; Kim, I. S. J. Org. Chem. 2014, 79, 275.
[18] Xiao, F. H.; Shuai, Q.; Li, C. J. Org. Lett. 2011, 13, 1614.
[19] Khemnar, A. B.; Bhanage, B. M. Eur. J. Org. Chem. 2014, 30, 6746.
[20] (a) Uehling, D. E.; Nanthakumar, S. S.; Croom, D.; Besterman, J. M. J. Med. Chem. 1995, 38, 1106. (b) Nagamura, S.; Kobayash, I. E.; Gomi, K.; Saito, H. Bioorg. Med. Chem. 1996, 4, 1379. (c) Sundermeier, M.; Zapf, A.; Beller, M.; Sans, S. Tetrahedron Lett. 2001, 42, 6707.
[21] Rappoport, Z. The Chemistry of the Cyano Group, Interscience Publishers, London, 1970.
[22] Jia, X. F.; Yang, D. P.; Cheng, J. J. Org. Chem. 2009, 74, 9470.
[23] Jia, X. F.; Yang, D. P.; Cheng, J. Org. Lett. 2009, 11, 4716.
[24] Kim, J. H.; Chang, S. J. Am. Chem. Soc. 2010, 132, 10272.
[25] Chen, X.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 12634.
[26] Sharma, A. K.; Roy, D.; Sunoj, R. B. Dalton Trans. 2014, 43, 10183.
[27] (a) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Yu, J. Q. Angew. Chem. 2005, 117, 7586. (b) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 7420. (c) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542. (d) Chuang, G. J.; Wang, W.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 1760. (e) Yang, Y.; Moinodeen, F.; Chin, W.; Ma, T.; Jiang, Z.; Tan, C. H. Org. Lett. 2012, 14, 4762. (f) Bigi, M. A.; Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2012, 134, 9721.
[28] Yan, Y. P.; Feng, P.; Zheng, Q. Z.; Liang, Y. F.; Lu, J. F.; Cui, Y. X.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 5827.
[29] Peng, X. G.; Zhu, Y. G.; Ramirez, T. A.; Zhao, B. G.; Shi, Y. Org. Lett. 2011, 19, 5244.
[30] Zhou, W.; Li, P. H.; Zhang, Y. C.; Wang, L. Adv. Synth. Catal. 2013, 355, 2343.
[31] Zhao, X. D.; Dimitrijevic, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466.
[32] Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Tetrahedron 2006, 62, 11483.
[33] Gong, X.; Song, G. Y.; Zhang, H.; Li, X. W. Org. Lett. 2011, 13, 1766.
[34] Xu, C. F.; Shen, Q. L. Org. Lett. 2014, 16, 2046.
[35] Iwasaki, M.; Tsuchiya, Y.; Nikajima, K.; Nishihara, Y. Org. Lett. 2014, 16, 4920.
[36] Qiu, R. H.; Reddy, V. P.; Iwasaki, T.; Kambe, N. J. Org. Chem. 2015, 80, 367.
[37] Saito, F.; Aiso, H.; Kochi, T.; Kakiuchi, F. Organometallics 2014, 33, 6704.
[38] Jia, X. F.; Zhang, S. H.; Wang, W. H.; Luo, F.; Cheng, J. Org. Lett. 2009, 14, 3120.
[39] Kim, M.; Sharma, S.; Park, J.; Kim, M.; Choi, Y.; Joen, Y.; Kawk, J. H.; Kim, I. S. Tetrahedron 2013, 69, 6552.
[40] Chu, J. H.; Lin, P. S.; Wu, M. J. Organometallics 2010, 18, 4058.
[41] Xu, Y. F.; Liu, P.; Li, S. L.; Sun, P. P. J. Org. Chem. 2015, 80, 1269.
[42] Sun, W.; Wang, M.; Zhang, Y. C.; Wang, L. Org. Lett. 2015, 17, 426.
[43] Kakiuchi, F.; Kochi, T.; Mutstani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310.
[44] Wang, X. S.; Truesdale, L.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 3648.
[45] Jia, C. F.; Zhang, S. H.; Wang, W. H.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120.
[46] Kuninobu, Y.; Twanaga, T.; Omura, T.; Takai, K. Angew. Chem., 2013, 125, 4527.
[47] Fall, Y.; Doucet, H.; Santelli, M. Synthesis 2010, 42, 127.
[48] Takfaoui, A.; Zhao, L. Q.; Touzani, R.; Dixneuf, P. H.; Doucet, H. Tetrahedron Lett. 2014, 55, 1697.
[49] Bae, S.; Jang, H. L.; Jung, H.; Joo, J. M. J. Org. Chem. 2015, 80, 690.
[50] Chuprakov, S.; Chernyak, N.; Dudnik. A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333.
[51] Li, F.; Park, Y.; Hah, J. M.; Ryu, J. Bioorg. Med. Chem. Lett. 2013, 23, 1083.
[52] Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201.
[53] Liu, W.; Li, Y. H.; Wang, Y.; Kuang, C. X. Eur. J. Org. Chem. 2013, 24, 5272.
[54] Liu, W.; Li, Y. H.; Xu, B.; Kuang, C. X. Org. Lett. 2013, 15, 2342.
[55] Liu, W.; Li, Y. H.; Wang, Y.; Kuang, C. X. Org. Lett. 2013, 15, 4682.
[56] Tian, Q. S.; Chen, X. M.; Liu, W.; Wang, Z. C.; Shi, S. P.; Kuang, C. X. Org. Biomol. Chem. 2013, 11, 7830.
[57] Wang, Z. C.; Tian, Q. S.; Yu, X.; Kuang, C. X. Adv. Synth. Catal. 2014, 356, 961.
[58] Wang, Z. C.; Kuang, C. X. Adv. Synth. Catal. 2014, 356, 1549.
[59] Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2010, 75, 5421.
[60] Park, G.; Lee, S.; Son, S. J.; Shin, S. Green Chem. 2013, 15, 3468.
[61] Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011, 50, 2387.
[62] Cui, S. L.; Wojtas, L.; Antilla, J. C. Org. Lett. 2011, 13, 5040. Kjake, S. M.; Soni, V.; Gonnadeband, R. G.; Punji, B. Dalton Trans. 2014, 43, 16084.

文章导航

/