综述与进展

铁催化氢化反应研究进展

  • 郭娜 ,
  • 朱守非
展开
  • 南开大学化学学院元素有机化学研究所 元素有机国家重点实验室 天津 300071

收稿日期: 2015-02-26

  修回日期: 2015-03-28

  网络出版日期: 2015-04-01

基金资助

国家自然科学基金(Nos. 21222205, 21172113, 21421062)、国家重点基础研究发展计划(973项目, No. 2011CB808600)、教育部“111计划”(No. B06005)和国家特支计划资助项目.

Iron-Catalyzed Hydrogenation Reactions

  • Guo Na ,
  • Zhu Shoufei
Expand
  • State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071

Received date: 2015-02-26

  Revised date: 2015-03-28

  Online published: 2015-04-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21222205, 21172113, 21421062), the National Basic Research Program of China (973 Program, No. 2011CB808600), the “111” Project (No. B06005) of the Ministry of Education of China, and the National Program for Support of Top-notch Young Professionals.

摘要

过渡金属催化不饱和有机化合物(如烯烃、炔烃、醛、酮、亚胺等)的氢化反应具有原子经济性高、操作简单、清洁绿色等优点, 是最重要的有机反应之一, 一直是研究的重点和热点, 并在工业生产中得到广泛应用. 目前氢化反应最常用的催化剂主要基于铑、钌、铱、钯等贵金属, 这些金属面临着资源枯竭、价格昂贵、重金属残留等问题. 铁储量丰富、价格便宜、环境友好, 发展铁催化的氢化反应符合可持续发展化学的要求, 近年来受到广泛关注. 以铁催化剂为主线, 系统综述了均相和非均相铁催化的氢化反应.

本文引用格式

郭娜 , 朱守非 . 铁催化氢化反应研究进展[J]. 有机化学, 2015 , 35(7) : 1383 -1398 . DOI: 10.6023/cjoc201502032

Abstract

The transition-metal-catalyzed hydrogenation of unsaturated organic compounds including alkenes, alkynes, aldehydes, ketones, and imines, is one of the most important organic transformations for both academic researches and industrial applications. The most popular catalysts for hydrogenation reactions are based on precious metals, such as rhodium, ruthenium, iridium, and palladium. The exhausting resource, the increasing high price, and the toxicity of the precious metals restrict their future applications. Iron is the most abundant transition metal in the earth crust and therefore the cheapest one with excellent environmental benign characters, is considered as an ideal replacement of the precious metal catalysts for hydrogenation reactions. This review paper introduced the newest achievements in the study of iron-catalyzed hydrogenation reactions in both homogenous and heterogeneous systems.

参考文献

[1] (a) de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007. (b) Gallezot, P. Hydrogenation-Heterogeneous in Encyclopedia of Catalysis, Vol. 4, Ed.: Horvath, I. T., Wiley, Hoboken, 2003.
[2] Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A 1966, 1711.
[3] (a) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis, Springer, Berlin, 1999. (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029. (c) Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2012, 70, 1427 (in Chinese). (谢建华, 周其林, 化学学报, 2012, 70, 1427.)
[4] (a) Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1998. (b) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008.
[5] (a) Blaser, H.-U.; Schmidt, E. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, Germany, 2004. (b) Shimizu, H.; Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Acc. Chem. Res. 2007, 40, 1385. (c) Johnson, N. B.; Lennon, I. C.; Moran, P. H.; Ramsden, J. A. Acc. Chem. Res. 2007, 40, 1291. (d) Ager, D. J.; de Vries, A. H. M.; de Vires, J. G. Chem. Soc. Rev. 2012, 41, 3340.
[6] For selected reviews, see: (a) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3317. (b) Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010, 75, 6061. (c) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (d) Zhu, S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580. (e) Xu, D.; Xiao, W.; Peng, J.; Li, J.; Bai, Y. Chin. J. Org. Chem. 2014, 34, 2195 (in Chinese). (徐大鹏, 肖文军, 彭家建, 历嘉云, 白赢, 有机化学, 2014, 34, 2195.)For selected examples, see:: (f) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546. (g) Cai, Y.; Zhu, S.-F.; Wang, G.-P.; Zhou, Q.-L. Adv. Synth. Catal. 2011, 353, 2939. (h) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567. (i) Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; Tan, D.; Si, R.; Zhang, S.; Li, J.; Sun, L.; Tang, Z.; Pan, X.; Bao, X. Science 2014, 344, 616. (j) Shen, J.-J.; Zhu, S.-F.; Cai, Y.; Xu, H.; Xie, X.-L.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 13188. (k) Zhang, Y.; Luo, S.; Feng, B.-N. Chin. J. Org. Chem. 2014, 34, 2249 (in Chinese). (张艳, 罗莎, 冯柏年, 有机化学, 2014, 34, 2249.) (l) Liu, S.-S.; Jiang, K.; Pi, D.-W.; Zhou, H.-F.; Uozumi, Y.; Zou, K. Chin. J. Org. Chem. 2014, 34, 1369 (in Chinese). (刘森生, 姜坤, 皮单违, 周海峰, Uozumi, Y., 邹坤, 有机化学, 2014, 34, 1369.)
[7] (a) Enthaler, S.; Junge, K.; Beller, M. In Iron Catalysis in Organic Chemistry-Reactions and Applications, Vol. 4, Ed.: Plietker, B., Wiley, Weinheim, 2008. (b) Chirik, P. J. Modern Alchemy: Replacing Precious Metals with Iron in Catalytic Alkene and Carbonyl Hydrogenation Reactions in Catalysis without Precious Metals, Ed.: Bullock, R. M., Wiley-VCH, Weinheim, 2010, Chapter 4. (c) Nakazawa, H.; Itazaki, M. Fe-H Complexes in Catalysis in Iron Catalysis-Fundamentals and Applications, Ed.: Plietker, B., Springer, Heideberg, 2011. (d) Bolm, C.; Legros, J.; Le Paih, J.; Zan, L. Chem. Rev. 2004, 104, 6217. (e) Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282. (f) Junge, K.; Schröder, K.; Beller, M. Chem. Commun. 2011, 47, 4849.
[8] Frankel, E. N.; Emken, E. A.; Peters, H. M.; Davison, V. L.; Butterfield, R. O. J. Org. Chem. 1964, 29, 3292.
[9] Frankel, E. N.; Emken, E. A.; Davison, V. L. J. Org. Chem. 1965, 30, 2739.
[10] Cais, M.; Maoz, N. J. Chem. Soc. A 1971, 1811.
[11] Schroeder, M. A.; Wrighton, M. S. J. Am. Chem. Soc. 1976, 98, 551.
[12] (a) Weiller, B. H.; Miller, M. E.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 352. (b) Weiller, B. H.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 1051. (c) Miller, M. E.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 7951.
[13] Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049.
[14] (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794. (b) Bart, S. C.; Lobkovsky, E.; Bill, E.; Wieghardt, K.; Chirik, P. J. Inorg. Chem. 2007, 46, 7055. (c) Trovitch, R. J.; Lobkovsky, E.; Bill, E.; Chirik, P. J. Organometallics 2008, 27, 1470. (d) Russell, S. K.; Darmon, J. M.; Lobkovsky, E.; Chirik, P. J. Inorg. Chem. 2010, 49, 2782.
[15] Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13901.
[16] Archer, A. M.; Bouwkamp, M. W.; Cortez, M.-P.; Lobkovsky, E.; Chirik, P. J. Organometallics 2006, 25, 4269.
[17] Bart, S. C.; Hawrelak, E. J.; Lobkovsky, E.; Chirik, P. J. Organometallics 2005, 24, 5518.
[18] Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. Inorg. Chem. 2006, 45, 7252.
[19] Yu, R. P.; Darmon, J. M.; Hoyt, J. M.; Margulieux, G. W.; Turner, Z. R.; Chirik, P. J. ACS Catal. 2012, 2, 1760.
[20] (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Organometallics 1989, 8, 2080. (b) Bianchini, C.; Meli, A.; Peruzzini, M.; Frediani, P.; Bohanna, C.; Esteruelas, M. A.; Ora, L. A. Organomentallics 1992, 11, 138.
[21] Daida, E. J.; Peters, J. C. Inorg. Chem. 2004, 43, 7474.
[22] Fong, H.; Moret, M.-E.; Lee, Y.; Peters, J. C. Organometallics 2013, 32, 3053.
[23] Srimani, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2013, 52, 14131.
[24] Tajima, Y.; Kunioka, E. J. Org. Chem. 1968, 33, 1689.
[25] (a) Inoue, H.; Suzuki, M. J. Chem. Soc., Chem. Commun. 1980, 817. (b) Inoue, H.; Sato, M. J. Chem. Soc., Chem. Commun. 1983, 983.
[26] Frank, D. J.; Guiet, L.; Käslin, A.; Murphy, E.; Thomas, S. P. RSC Adv. 2013, 3, 25698.
[27] Phua, P.-H.; Lefort, L.; Boogers, J. A. F.; Tristany, M.; de Vries, J. G. Chem. Commun. 2009, 3747.
[28] Rangheard, C.; de Julián Fernández, C.; Phua, P.-H.; Hoorn, J.; Lefort, L.; de Vries, J. G. Dalton Trans. 2010, 39, 8464.
[29] Welther, A.; Bauer, M.; Mayer, M.; von Wangelin, A. J. ChemCatChem 2012, 4, 1088.
[30] Gieshoff, T. N.; Welther, A.; Kessler, M. T.; Prechtl, M. H. G.; von Wangelin, A. J. Chem. Commun. 2014, 50, 2261.
[31] Stein, M.; Wieland, J.; Steurer, P.; Tölle, F.; Mülhaupt, R.; Breit, B. Adv. Synth. Catal. 2011, 353, 523.
[32] Kelsen, V.; Wendt, B.; Werkmeister, S.; Junge, K.; Beller M.; Chaudret, B. Chem. Commun. 2013, 49, 3416.
[33] Hudson, R.; Rivière, A.; Cirtiu, C. M.; Luska, K. L.; Moores, A. Chem. Commun. 2012, 48, 3360.
[34] For a review, see: Bauer, G.; Kirchner, K. A. Angew. Chem., Int. Ed. 2011, 50, 5798.
[35] Knölker, H.-J.; Baum, E.; Goesmann, H.; Klauss, R. Angew. Chem., Int. Ed. 1999, 38, 2064.
[36] (a) Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics 1985, 4, 1459. (b) Shvo, Y.; Czarkie, D.; Rahamim Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986, 108, 7400.
[37] (a) Casey, C. P.; Guan, H. J. Am. Chem. Soc. 2007, 129, 5816. For selected reviews, see: (b) Bullock, R. M. Angew. Chem., Int. Ed. 2007, 46, 7360. (c) Quintard, A.; Rodriguez, J. Angew. Chem., Int. Ed. 2014, 53, 4404.
[38] (a) Casey, C. P.; Guan, H. J. Am. Chem. Soc. 2009, 131, 2499. For a review, see: (b) Chakraborty, S.; Guan, H. Dalton Trans. 2010, 39, 7427.
[39] Zhang, H.-H.; Chen, D.-Z.; Zhang, Y.-H.; Zhang, G.-Q.; Liu, J.-B. Dalton Trans. 2010, 39, 1972.
[40] Lu, X.; Zhang, Y.-W.; Yun, P.; Zhang, M.-T.; Li, T.-L. Org. Biomol. Chem. 2013, 11, 5264.
[41] (a) Pagnoux-Ozherelyeva, A.; Pannetier, N.; Mbaye, M. D.; Gaillard, S.; Renaud, J.-L. Angew. Chem. Int. Ed. 2012, 51, 4976. (b) Moulin, S.; Dentel, H.; Pagnoux-Ozherelyeva, A.; Gaillard, S.; Poater, A.; Cavallo, L.; Lohier, J.-F.; Renaud, J.-L. Chem. Eur. J. 2013, 19, 17881.
[42] Mérel, D. S.; Elie, M.; Lohier, J.-F.; Gaillard, S.; Renaud, J.-L. ChemCatChem 2013, 5, 2939.
[43] Fleischer, S.; Zhou, S.-L.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 5120.
[44] Berkessel, A.; Reichau, S.; von der Höh, A.; Leconte, N.; Neudörfl, J.-M. Organometallics 2011, 30, 3880.
[45] Zhou, S.; Fleischer, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 5120.
[46] Fleischer, S.; Zhou, S.; Werkmeister, S.; Junge, K.; Beller, M. Chem. Eur. J. 2013, 19, 4997.
[47] Fleischer, S.; Werkmeister, S.; Zhou, S.; Junge, K.; Beller, M. Chem. Eur. J. 2012, 18, 9005.
[48] (a) Sui-Seng, C.; Freutel, F.; Lough, A. J.; Morris, R. H. Angew. Chem., Int. Ed. 2008, 47, 940. (b) Sui-Seng, C.; Haque, F. N.; Hadzovic, A.; Pütz, A.-M.; Reuss, V.; Meyer, N.; Lough, A. J.; Zimmer-De Iuliis, M.; Morris, R. H. Inorg. Chem. 2009, 48, 735.
[49] Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. F.; Wang, K. Y.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2014, 136, 1367.
[50] Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 2120.
[51] Langer, R.; Iron, M. A.; Konstantinovski, L.; Diskin-Posner, Y.; Leitus, G.; Ben-David, Y.; Milstein, D. Chem. Eur. J. 2012, 18, 7196.
[52] Zell, T.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2014, 53, 4685.
[53] (a) Chakraborty, S.; Dai, H.-G.; Bhattacharya, P.; Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H.-R. J. Am. Chem. Soc. 2014, 136, 7869. (b) Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 8722.
[54] Wienhöfer, G.; Westerhaus, F. A.; Junge, K.; Ludwig, R.; Beller, M. Chem. Eur. J. 2013, 19, 7701.
[55] Li, Y.-Y.; Yu, S.-L.; Wu, X.-F.; Xiao, J.-L.; Shen, W.-Y.; Dong, Z.-R.; Gao, J.-X. J. Am. Chem. Soc. 2014, 136, 4031.
[56] Hoyt, J. M.; Shevlin, M.; Margulieux, G. W.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Organometallics 2014, 33, 5781.
[57] Xie, J.-H.; Liu, X.-Y.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 7329.
[58] After the acceptance of this paper, several significant progresses in iron-catalyzed hydrogenation was reported. For hydrogenation of olefins, see: (a) Gärtner, D.; Welther, A.; Rad, B. R.; Wolf, R.; von Wangelin, A. J. Angew. Chem., Int. Ed. 2014, 53, 3722.(b) Manna, K.; Zhang, T.; Carboni, M.; Abney, C. W.; Lin, W. J. Am. Chem. Soc. 2014, 136, 13182.(c) Guo, N.; Hu, M.-Y.; Feng, Y.; Zhu, S.-F. Org. Chem. Front. 2015, 2, 692.For hydrogenation of carbonyl compounds and imines, see: (d) Gorgas, N.; Stöger, B.; Veiros, L. F.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Organometallics 2014, 33, 6905. (e) Lu, L.-Q.; Li, Y.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 2763.

文章导航

/