多孔网状聚苯胺包覆磁性纳米Fe3O4负载钯催化的Suzuki及Heck偶联反应
收稿日期: 2015-03-12
修回日期: 2015-04-19
网络出版日期: 2015-04-27
基金资助
国家自然科学基金(Nos. 21102087, 21202095)资助项目.
Microporous Network Polyaniline Coated Magnetic Fe3O4 Nanoparticals Supported Palladium Catalyzed Suzuki and Heck Coupling Reactions
Received date: 2015-03-12
Revised date: 2015-04-19
Online published: 2015-04-27
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21102087, 21202095).
为解决均相钯催化剂难于分离回收及循环使用问题, 发展了一种廉价易行的方法合成易于原位磁分离回收的磁性纳米粒子(MNPs)负载钯催化剂Fe3O4@MOPPA-Pd. 该催化剂可高效催化卤代苯的Suzuki反应及Heck反应, 且对Suzuki偶联反应具有尤其高的催化活性, 在温和条件下, 10 mg Fe3O4@MOPPA-Pd可催化300 mmol溴苯与苯硼酸的偶联反应, 联苯的分离收率达98%, 转化数(TON)及转化率(TOF)分别高达77052和51368 h-1. 此外, Fe3O4@MOPPA-Pd可在外加磁场存在下由反应体系中方便分离回收, 循环使用4次以上催化活性无明显降低.
关键词: 磁性纳米粒子; 负载钯催化剂; C—C偶联反应; Heck偶联反应; Suzuki偶联反应
黑莉楹 , 冯翠兰 , 李珍 , 刘澜涛 , 桂建舟 . 多孔网状聚苯胺包覆磁性纳米Fe3O4负载钯催化的Suzuki及Heck偶联反应[J]. 有机化学, 2015 , 35(8) : 1673 -1681 . DOI: 10.6023/cjoc201503014
To solve the recovery and recycling problem of homogeneous palladium catalyst, a cheap and convenient method was developed for the synthesis of magnetic nanoparticles (MNPs) supported palladium catalyst Fe3O4@MOPPA-Pd which is easily in situ separated from the reaction system by the application of a permanent magnet. The catalyst can highly catalyzed the Suzuki reaction and Heck reaction of different halogenobenzenes. Especially, it has higher catalytic activity for Suzuki coupling reaction. Under mild reaction conditions, 300 mmol of bromobenzene reacted with phenylboronic acid catalyzed by 10 mg of Fe3O4@MOPPA-Pd can give the product with 98% yield. And the turnover number (TON) and turnover frequency (TOF) of the catalyst reached 77052 and 51368 h-1, respectively. In addition, Fe3O4@MOPPA-Pd can be easily separated from reaction system in the presence of magnetic field and the catalytic activity was not decreased by at least 4 times recycles.
[1] (a) Li, H. M.; Tan X.; Zhang, J.Y. Chin. J. Chem. 2015, 33, 141. (b) Li, H.; Ding, C. H., Xu, B.; Hou, X. L. Acta Chim. Sinica 2014, 72, 765 (in Chinese). (李浩, 丁昌华, 许斌, 侯雪龙, 化学学报, 2014, 72, 765.) (c) Li, Z. H.; Chen, J.; Su, W. P.; Hong, M. C. Acta Chim. Sinica 2014, 72, 552 (in Chinese). (李召好, 陈静, 苏伟平, 洪茂椿, 化学学报, 2014, 72, 552.) (d) Wen, Y. M.; Jiang, H. F. Acta Chim. Sinica 2012, 70, 1716 (in Chinese). (温燕梅, 江焕峰. 化学学报, 2012, 70, 1716.)
[2] (a) Estrada, G. O. D.; Blanco, A. L. P.; da Silva, J. F. M.; Alonso, C. G.; Fernandes-Machado, N. R. C.; Cardozo-Filho, L.; de Souza, R. O. M. A.; Miranda, L. S. M. Tetrahedron Lett. 2012, 53, 1089. (b) Du, Q.; Zhang, W.; Ma, H.; Zheng, J.; Zhou, B.; Li, Y. Tetrahedron 2012, 68, 3577. (c) Diebold, C.; Becht, J.-M.; Lu, J.; Toy, P. H.; Drian, C. L. Eur. J. Org. Chem. 2012, 893. (d) Lamblin, M.; Nassar-Hardy, L.; Hierso, J.-C.; Fouquet, E.; Felpin, F.-X. Adv. Synth. Catal. 2010, 352, 33. (e) Schweizer, S.; Becht, J.-M.; Le Drian, C. Tetrahedron 2010, 66, 765. (f) Diebold, C.; Becht, J.-M.; Lu, J.; Toy, P. H.; Le Drian, C. Eur. J. Org. Chem. 2012, 893. (g) Nie, G. R.; Zhang, L.; Cui, Y. C. Chin. J. Org. Chem. 2013, 33, 1734 (in Chinese). (聂广瑞, 张磊, 崔元臣, 有机化学, 2013, 33, 1734.) (h) Yuan, D. Z., Chen, B. B. Chin. J. Org. Chem. 2014, 34, 1630 (in Chinese). (袁定重, 陈碧波, 有机化学, 2014, 34, 1630.)
[3] For review see: (a) Nasir Baig, R. B.; Varma, R. S. Chem. Commun. 2013, 49, 752. (b) Wang, D.; Astruc, D. Chem. Rev. 2014, 114, 6949. (c) Gawande, M. B.; Brancoa, P. S.; Varma, R. S. Chem. Soc. Rev. 2013, 42, 3371. (d) Shylesh, S.; Schünemann, V.; Thiel, W. R. Angew. Chem., Int. Ed. 2010, 49, 3428. (e) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Chem. Rev. 2011, 111, 3036.
[4] (a) Rangel, E. R.; Maya, E. M.; Sánchez, F.; de la Campa, J. G.; Iglesias, M. Green Chem. 2015, 17, 466. (b) Pachfule, P.; Panda, M. K.; Kandambeth, S.; Shivaprasad, S. M.; Díaz Díaz D.; Banerjee, R. J. Mater. Chem. A, 2014, 2, 7944. (c) Ding, S.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.; Su, C.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816. (d) Li, B.; Guan, Z.; Yang, X.; Wang, W.-D.; Wang, W.; Hussain, I.; Song, K.; Tan, B.; Li, T. J. Mater. Chem. A, 2014, 2, 11930. (e) Li, L.; Zhao, H.; Wang, R. ACS Catal. 2015, 5, 948. (f) Shunmughanathan, M.; Puthiaraj, P.; Pitchumani, K. ChemCatChem 2015, 7, 666.
[5] (a) Yang, X.; Li, B.; Majeed, I.; Liang, L.; Long, X.; Tan, B. Polym. Chem 2013, 4, 1425. (b) Yoo, J.; Park, N.; Park, J. H.; Park, J. H.; Kang, S.; Lee, S. M.; Kim, H. J.; Jo, H.; Park, J. G.; Son, S. U. ACS Catal. 2015, 5, 350. (c) Yang, J.; Wang, D.; Liu, W.; Zhang, X.; Bian, F.; Yu, W. Green Chem. 2013, 15, 3429.
[6] Li, B.; Gong, R.; Wang, W.; Zhang, X.-H.; W.; Li, H.; Hu, C.; Tan, B. Macromolecules 2011, 44, 2410.
[7] Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Adv. Mater. 2012, 24, 3390
[8] Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Adv. Mater. 2012, 24, 5703.
[9] Dawson, R.; Ratvijitvech, T.; Corker, M.; Laybourn, A.; Khimyak, Y. Z.; Cooper, A. I.; Adams, D. J. Polym. Chem. 2012, 3, 2034.
[10] Yang, X.; Li, B.; Majeed, I.; Liang, L.; Long X.; Tan, B. Polym. Chem. 2013, 4, 1425.
[11] Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Akbari, S.; Jeddi, N. RSC Adv. 2014, 4, 17060.
[12] Yang, J.; Wang, D.; Liu, W.; Zhang, X.; Bian, F.; Yu, W. Green Chem. 2013, 15, 3429.
[13] Karimi, B.; Mansouri, F.; Vali, H. Green Chem. 2014, 16, 2587.
[14] Borhade, S. R.; Waghmode, S. B. Beilstein J. Org. Chem. 2011, 7, 310.
[15] Jadsada, R.; Thanawat, C,; Songyos, P.; Sirilata, Y.; Preeyanuch, S.; Pailin, S.; Palangpon, K.; Supavadee, K. J. Organomet. Chem. 2014, 752, 161.
[16] Wan, L.; Cai, C. Catal. Commun. 2012, 24, 105.
[17] Liu, C.; Ni, Q. J.; Hu, P. P.; Qiu, J. S. Org. Biomol. Chem. 2011, 9, 1054.
[18] Kabalka, G. W.; Al-Masum, M. Tetrahedron Lett. 2005, 46, 6329.
[19] Yang, X.; Wang, Z. X. Organometallics 2014, 33, 5863.
[20] Lourak, M.; Vanderesse, R.; Fort, Y.; Caubère, P. J. Org. Chem. 1989, 54, 4844.
[21] Movassagh, B.; Takallou, A.; Mobaraki, A. J. Mol. Catal. A: Chem. 2015, 401, 55.
[22] Chen, C.; Qiu, H. Y.; Chen, W. Z. J. Org. Chem. 2012, 696, 4166.
[23] Haga, N.; Takayanagi, H. J. Org. Chem. 1996, 61, 735.
[24] West, T. H.; Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2014, 136, 4476.
[25] Omar, S.; Abu-Reziq, R. J. Phys. Chem. C 2014, 118, 30045.
[26] Fortea-Pérez, F. R.; Schlegel, I.; Julve, M.; Armentano, D.; De Munno, G.; Stiriba, S. E. J. Organomet. Chem. 2013, 743, 102.
[27] Gharaati, S.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I. J. Organomet. Chem. 2012, 720, 26.
[28] Gupta, S.; Ganguly, B.; Das, S. RSC Adv. 2014, 4, 41148.
[29] Basu, B.; Paul, S. Appl. Organometal. Chem. 2013, 27, 588.
[30] Zeng, M. F.; Zhang, X.; Shao, L. J.; Qi, C. Z.; Zhang, X. M. J. Organomet. Chem. 2012, 704, 29.
/
〈 |
|
〉 |