综述与进展

螯合型氮杂环卡宾金属化合物的研究进展

  • 杨亮茹 ,
  • 郭旗 ,
  • 肖咏梅 ,
  • 毛璞
展开
  • 河南工业大学化学化工学院 郑州 450001

收稿日期: 2015-03-25

  修回日期: 2015-05-22

  网络出版日期: 2015-06-04

基金资助

国家自然科学基金(No. 21172055)、郑州市科技创新团队(No. 131PCXTD605)和河南工业大学科技创新人才培育计划(No. 11CXRC10)资助项目.

Development of Chelating N-Heterocyclic Carbene Metal Complexes

  • Yang Liangru ,
  • Guo Qi ,
  • Xiao Yongmei ,
  • Mao Pu
Expand
  • School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001

Received date: 2015-03-25

  Revised date: 2015-05-22

  Online published: 2015-06-04

Supported by

Project supported by the National Natural Science Foundation of China (No. 21172055), the Program for Innovative Research Team from Zhengzhou (No. 131PCXTD605) and the Plan for Scientific Innovation Talent of Henan University of Technology (No. 11CXRC10).

摘要

氮杂环卡宾金属化合物已被广泛应用于有机、材料、医药及生物科学等领域. 从金属化合物的结构出发, 主要介绍含NHC⌒P、NHC⌒N、NHC⌒O和NHC⌒S配体螯合型金属化合物的合成及应用, 综述了近年来基于氮杂环卡宾的螯合型金属化合物合成与应用的最新研究进展.

本文引用格式

杨亮茹 , 郭旗 , 肖咏梅 , 毛璞 . 螯合型氮杂环卡宾金属化合物的研究进展[J]. 有机化学, 2015 , 35(9) : 1834 -1847 . DOI: 10.6023/cjoc201503040

Abstract

N-Heterocyclic carbene (NHC) metal complexes have been widely used in the fields of organic chemistry, material, pharmacy and biology chemistry. The recent progress in the synthesis and application of chelating NHC metal complexes containing different chelating ligands, such as NHC⌒P, NHC⌒N, NHC⌒O and NHC⌒S is summarized.

参考文献

[1] Arduengo III, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
[2] (a) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.(b) Chiang, P. C.; Bode, J. W. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools, Ed.: Díez-Gonzí-lez, S., RSC publishing, 2011, pp. 399~435.(c) Crabtree, R. H. Coord. Chem. Rev. 2013, 257, 755.(d) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906.(e) Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.; César, V. Chem. Rev. 2011, 111, 2705.(f) Nelson, D. J.; Nolan, S. P. Chem. Soc. Rev. 2013, 42, 6723.(g) Budagumpi, S.; Haque, R. A.; Salman, A. W. Coord. Chem. Rev. 2012, 256, 1787.
[3] Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815.
[4] (a) Eguillor, B.; Esteruelas, M. A.; García-Raboso, J.; Olivín, M.; Oñate, E.; Pastor, I. M.; Penafiel, I.; Yus, M. Organometallics 2011, 30, 1658.(b) Poyatos, M.; Maisse-François, A.; Bellemin-Laponnaz, S.; Peris, E.; Gade, L. H. J. Organomet. Chem. 2006, 691, 2713.
[5] Li, F.; Hu, J. J.; Koh, L. L.; Hor, T. S. A. Dalton Trans. 2010, 39, 5231.
[6] (a) Ozboya, K. E.; Rovis, T. Synlett 2014, 25, 2665.(b) Unger, Y.; Meyer, D.; Strassner, T. Dalton Trans. 2010, 39, 4295.
[7] Zhou, Y.; Xi, Z.; Chen, W.; Wang, D. Organometallics 2008, 27, 5911.
[8] Lin, I. J. B.; Vasam, C. S. Coord. Chem. Rev. 2007, 251, 642.
[9] Chung, L.-H.; Chan, S.-C.; Lee, W.-C.; Wong, C.-Y. Inorg. Chem. 2012, 51, 8693.
[10] Oehninger, L.; Rubbiani, R.; Ott, I. Dalton Trans. 2013, 42, 3269.
[11] Díez-González, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612.
[12] Stylianides, N.; Danopoulos, A. A.; Tsoureas, N. J. Organomet. Chem. 2005, 690, 5948.
[13] Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[14] Herrmann, W. A.; Köcher, C.; Gooßen, L. J.; Artus, G. R. Chem. Eur. J. 1996, 2, 1627.
[15] Yang, C.; Lee, H. M.; Nolan, S. P. Org. Lett. 2001, 3, 1511.
[16] Tsoureas, N.; Danopoulos, A. A.; Tulloch, A. A. D.; Light, M. E. Organometallics 2003, 22, 4750.
[17] Lee, H. M.; Chiu, P. L.; Zeng, J. Y. Inorg. Chim. Acta 2004, 357, 4313.
[18] Ho, C.-C.; Chatterjee, S.; Wu, T.-L.; Chan, K.-T.; Chang, Y.-W.; Hsiao, T.-H.; Lee, H. M. Organometallics 2009, 28, 2837.
[19] Hahn, F. E.; Jahnke, M. C.; Pape, T. Organometallics 2006, 25, 5927.
[20] Naziruddin, A. R.; Hepp, A.; Pape, T.; Hahn, F. E. Organometallics 2011, 30, 5859.
[21] Gu, P.; Zhang, J.; Xu, Q.; Shi, M. Dalton Trans. 2013, 42, 13599.
[22] Gu, P.; Xu, Q.; Shi, M. Tetrahedron 2014, 70, 7886.
[23] Gu, S. J. Huang, J. J. Chen, W. Z. Chin. J. Org. Chem. 2013, 33, 715 (in Chinese).(顾绍金, 黄菁菁, 陈万芝, 有机化学, 2013, 33, 715.)
[24] Cheng, Y. Sun, Y. L. Chin. J. Org. Chem. 2012, 32, 511 (in Chinese). (承勇, 孙礼林, 有机化学, 2012, 32, 511.)
[25] McGuinness, D. S.; Cavell, K. J. Organometallics 2000, 19, 741.
[26] Tulloch, A. A. D.; Danopoulos, A. A.; Tooze, R. P.; Cafferkey, S. M.; Kleinhenz, S.; Hursthouse, M. B. Chem. Commun. 2000, 1247.
[27] Cheng, Y.; Xu, H.-J.; Sun, J.-F.; Li, Y.-Z.; Chen, X.-T.; Xue, Z.-L. Dalton Trans. 2009, 7132.
[28] Li, X.-W.; Wang, G.-F.; Chen, F.; Li, Y.-Z.; Chen, X.-T.; Xue, Z.-L. Inorg. Chim. Acta 2011, 378, 280.
[29] Khlebnikov, V.; Meduri, A.; Mueller-Bunz, H.; Montini, T.; Fornasiero, P.; Zangrando, E.; Milani, B.; Albrecht, M. Organometallics 2012, 31, 976.
[30] Chiang, M.; Li, Y.; Krishnan, D.; Sumod, P.; Ng, K. H.; Leung, P. H. Eur. J. Inorg. Chem. 2010, 1413.
[31] Schumacher, A.; Bernasconi, M.; Pfaltz, A. Angew. Chem., Int. Ed. 2013, 52, 7422.
[32] Wang, R.; Twamley, B.; Shreeve, J. M. J. Org. Chem. 2006, 71, 426.
[33] Messerle, B. A.; Page, M. J.; Turner, P. Dalton Trans. 2006, 3927.
[34] (a) Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D.-R.; Reibenspies, J. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113.(b) Cui, X.; Burgess, K. Chem. Rev. 2005, 105, 3272.
[35] Cheng, C.-H.; Xu, J.-R.; Song, H.-B.; Tang, L.-F. Transition Met. Chem. 2014, 39, 151.
[36] Chen, C.; Qiu, H.; Chen, W.; Wang, D. J. Organomet. Chem. 2008, 693, 3273.
[37] Meyer, D.; Taige, M. A.; Zeller, A.; Hohlfeld, K.; Ahrens, S.; Strassner, T. Organometallics 2009, 28, 2142.
[38] Meyer, D.; Zeller, A.; Strassner, T. J. Organomet. Chem. 2012, 701, 56.
[39] Samanta, T.; Seth, S. K.; Chattopadhyay, S. K.; Mitra, P.; Kushwah, V.; Dinda, J. Inorg. Chim. Acta 2014, 411, 165.
[40] Bonnet, L. G.; Douthwaite, R. E.; Kariuki, B. M. Organometallics 2003, 22, 4187.
[41] Bonnet, L. G.; Douthwaite, R. E.; Hodgson, R.; Houghton, J.; Kariuki, B. M.; Simonovic, S. Dalton Trans. 2004, 3528.
[42] Badaj, A. C.; Lavoie, G. G. Organometallics 2013, 32, 4577.
[43] Waltman, A. W.; Grubbs, R. H. Organometallics 2004, 23, 3105.
[44] Hameury, S.; de Frémont, P.; Breuil, P.-A. R.; Olivier-Bourbigou, H.; Braunstein, P. Inorg. Chem. 2014. 53, 5189.
[45] Nagai, Y.; Kochi, T.; Nozaki, K. Organometallics 2009, 28, 6131.
[46] Zhou, X.; Jordan, R. F. Organometallics 2011, 30, 4632.
[47] Bierenstiel, M.; Cross, E. D. Coord. Chem. Rev. 2011, 255, 574.
[48] Yuan, D.; Huynh, H. V. Molecules 2012, 17, 2491.
[49] Huynh, H. V.; Yeo, C. H.; Tan, G. K. Chem. Commun. 2006, 3833.
[50] Fliedel, C.; Braunstein, P. Organometallics 2010, 29, 5614.
[51] Fliedel, C.; Sabbatini, A.; Braunstein, P. Dalton Trans. 2010, 39, 8820.
[52] Krishnan, D.; Wu, M.; Chiang, M.; Li, Y.; Leung, P.-H.; Pullarkat, S. A. Organometallics 2013, 32, 2389.
[53] Bernhammer, J. C.; Huynh, H. V. Organometallics 2013, 33, 172.
[54] Bernhammer, J. C.; Huynh, H. V. Organometallics 2014, 33, 1266.

文章导航

/