研究论文

银催化炔丙醇与芳基异腈交叉偶联反应:原子经济性合成N-芳基-2,3-联烯酰胺

  • 徐文帅 ,
  • 赵寿经 ,
  • 骆晓沛 ,
  • 宋金娜 ,
  • 刘建全 ,
  • 毕锡和 ,
  • 廖沛球
展开
  • a 吉林大学生物与农业工程学院 长春 130022;
    b 东北师范大学化学学院 长春 130024

收稿日期: 2015-05-19

  修回日期: 2015-06-15

  网络出版日期: 2015-06-24

基金资助

国家自然科学基金(Nos. 31101010, 21202016和21372038)资助项目.

Silver-Catalyzed Cross-Coupling Reaction of Propargylic Alcohols and Arylisocyanides: An Atom-Economic Synthesis of N-Aryl-2,3-allenamides

  • Xu Wenshuai ,
  • Zhao Shoujing ,
  • Luo Xiaopei ,
  • Song Jinna ,
  • Liu Jianquan ,
  • Bi Xihe ,
  • Liao Peiqiu
Expand
  • a College of Biological and Agricultural Engineering, Jilin University, Changchun 130022;
    b Department of Chemistry, Northeast Normal University, Changchun 130024

Received date: 2015-05-19

  Revised date: 2015-06-15

  Online published: 2015-06-24

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 31101010, 21202016 and 21372038).

摘要

炔丙醇和芳基异氰在银催化条件下能够发生交叉偶联反应, 高产率地生成N-芳基-2,3-联烯酰胺. 该反应具有条件温和、原子经济性和底物范围宽泛等优点, 多种芳基异腈和炔丙醇均能发生交叉偶联反应, 并生成相应的N-芳基-2,3-联烯酰胺. 该方法解决了前期工作中异腈种类受限的问题, 为合成N-芳基联烯酰胺提供了简便新途径.

本文引用格式

徐文帅 , 赵寿经 , 骆晓沛 , 宋金娜 , 刘建全 , 毕锡和 , 廖沛球 . 银催化炔丙醇与芳基异腈交叉偶联反应:原子经济性合成N-芳基-2,3-联烯酰胺[J]. 有机化学, 2015 , 35(10) : 2095 -2101 . DOI: 10.6023/cjoc201505025

Abstract

A silver-catalyzed cross-coupling of propargylic alcohols and aryl isocyanides to N-aryl-2,3-allenamides has been developed. This reaction is both atom and step economic and applicable to a broad scope of substrates, affording a range of synthetically useful N-aryl-2,3-allenamides in good to high yields under mild conditions. This protocol has successfully solved the problem in our previous report that the isocyanides were limited to active methylene isocyanides, provided an extremely simple way to access the synthetically useful N-aryl-2,3-allenamides.

参考文献

[1] (a) Brummond, K. M.; Chen, H. In Modern Allene Chemistry, Eds.: Krause, N.; Hashmi, A. S. K., Wiley-VCH, Weinheim, 2004, 1041. (b) Ma, S. In Topics in Organometallic Chemistry, Ed.: Tsuji, J., Springer-Verlag, Heidelberg, 2005. (c) Ma, S. Chem. Rev. 2005, 105, 2829. (d) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954.(e) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. (f) Lopez, R.; Mascarenas, J. L. Chem. Eur. J. 2011, 77, 418. (g) Rivera-Fuentes, P.; Diederich, F. Angew. Chem., Int. Ed. 2012, 51, 2818. (h) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074.
[2] (a) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev. 2002, 31, 12. (b) Ma, S. Acc. Chem. Res. 2003, 36, 701. (c) Ma, S. Acc. Chem. Res. 2009, 42, 1679.
[3] (a) Ma, S.-M.; Xie, H.-X. J. Org. Chem. 2002, 67, 6575. (b) Ma, S.-M.; Xie, H.-X. Tetrahedron 2005, 61, 251. (c) Nedolya, N. A.; Brandsma, L. Tetrahedron Lett. 2002, 43, 1569. (d) Chen, G.; Zhang, Y.; Fu, C.; Ma, S. Tetrahedron 2011, 67, 2332. (e) Chen, G.; Li, Y.; Fu, C.; Ma, S. Tetrahedron 2009, 65, 4547. (f) Ma, S.; Xie, H. Org. Lett. 2000, 2, 3801. (g) Ma, S.; Gu, Z.; Yu, Z. J. Org. Chem. 2005, 70, 6291.
[4] Chen, G.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2900.
[5] Yuan, W.; Zhang, X.; Yu, Y.; Ma, S. Chem. Eur. J. 2013, 19, 7193.
[6] (a) Trieu, N. D.; Elsevier, C. J.; Vrieze, K. J. Organomet. Chem. 1987, 325, C23. (b) Marshall, J. A.; Wallace, E. M. J. Org. Chem. 1996, 61, 3238.
[7] Tomida, Y.; Nagaki, A.; Yoshida, J. J. Am. Chem. Soc. 2011, 133, 3744.
[8] (a) Himbert, G.; Schlindwein, H.-J. Z. Naturforsch. 1992, 47b, 1785. (b) Himbert, G.; Schlindwein, H.-J. Liebigs Ann. Chem. 1997, 435.
[9] (a) Crouch, I. T.; Neff, R. K.; Frantz, D. E. J. Am. Chem. Soc. 2013, 135, 4970.. (b) Liu, J.; Liu, Z.; Wu, N.; Liao, P.; Bi, X. Chem. Eur. J. 2014, 20, 2154.
[10] Cera, G.; Piscitelli, S.; Chiarucci, M.; Fabrizi, G.; Goggiamani, A.; Ramon, R. S.; Nolan, S. P.; Bandini, M. Angew. Chem., Int. Ed. 2012, 51, 9891.
[11] Harmata, M. Silver in Organic Chemistry, John Wiley & Sons Inc., Hoboken, 2010.
[12] (a) Liu, Z.; Liu, J.; Zhang, L.; Liao, P.; Song, J.; Bi, X. Angew. Chem., Int. Ed. 2014, 53, 5305. (b) Fang, Z.; Liao, P.; Yang, Z.; Wang, Y.; Zhou, B.; Yang, Y.; Bi, X. Eur. J. Org. Chem. 2014, 5, 924. (c) Fang, G.; Li, J.; Wang, Y.; Gou, M.; Liu, Q.; Li, X.; Bi, X. Org. Lett. 2013, 15, 4126. (d) Liu, J.; Fang, Z.; Zhang, Q.; Liu, Q.; Bi, X. Angew. Chem., Int. Ed. 2013, 52, 6953. (e) Liu, Y.; Barry, B.-D.; Yu, H.; Liu, J.; Liao, P.; Bi, X. Org. Lett. 2013, 15, 2608. (f) Fang, Z.; Yuan, H.; Liu, Y.; Tong, Z.; Li, H.; Yang, J.; Barry, B.-D.; Liu, J.; Liao, P.; Zhang, J.; Liu, Q.; Bi, X. Chem. Commun. 2012, 48, 8802. (g) Yang, Z.-L.; Liao, P.-Q.; Li, X.-Q.; Bi, X.-H. Chin. J. Org. Chem. 2015, 35, 610 (in Chinese). (杨宗莲, 廖沛球, 李兴奇, 毕锡和, 有机化学, 2015, 35, 610.)
[13] (a) Nenajdenko, V. G. Isocyanide Chemistry: Applications in Synthesis and Material Science, 1st ed., Wiley-VCH, Weinheim, 2012. (b) Wang, H.; Xu, B. Chin. J. Org. Chem. 2015, 35, 588 (in Chinese). (王浩, 许斌, 有机化学, 2015, 35, 588.)
[14] Qiu, G.; Ding, Q.; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.
[15] Barnea, E.; Andrea, T.; Kapon, M.; Berthet, J.-C.; Ephritikhine, M.; Eisen, M. S. J. Am. Chem. Soc. 2004, 126, 10860.
[16] Létinois-Halbes, U.; Pale, P.; Berger, S. J. Org. Chem. 2005, 70, 9185.
[17] Trost, B. M.; Chung, C. K. J. Am. Chem. Soc. 2006, 128, 10358.

文章导航

/